Достоверность статистических данных формула. Что такое статистическая значимость при оптимизации конверсии

Исследование обычно начинается с некоторого предположения, требую-щего проверки с привлечением фактов. Это предположение — гипотеза — формулируется в отношении связи явлений или свойств в некоторой сово-купности объектов.

Для проверки подобных предположений на фактах необходимо измерить соответствующие свойства у их носителей. Но невозможно измерить тревож-ность у всех женщин и мужчин, как невозможно измерить агрессивность у всех подростков. Поэтому при проведении исследования ограничиваются лишь относительно небольшой группой представителей соответствующих совокупностей людей.

Генеральная совокупность — это все множество объектов, в отношении ко-торого формулируется исследовательская гипотеза.

Например, все мужчины; или все женщины; или все жители какого-либо города. Генеральные совокупности, в отно-шении которых исследователь собирается сделать выводы по результатам ис-следования, могут быть по численности и более скромными, например, все первоклассники данной школы.

Таким образом, генеральная совокупность — это хотя и не бесконечное по численности, но, как правило, недоступное для сплошного исследования мно-жество потенциальных испытуемых.

Выборка или выборочная совокупность — это ограниченная по численности группа объектов (в психоло-гии — испытуемых, респондентов), специально отбираемая из генеральной совокупности для изучения ее свойств. Соответственно, изучение на выбор-ке свойств генеральной совокупности называется выборочным исследованием. Практически все психологические исследования являются выборочными, а их выводы распространяются на генеральные совокупности.

Таким образом, после того, как сформулирована гипотеза и определены соответствующие генеральные совокупности, перед исследователем возни-кает проблема организации выборки. Выборка должна быть такой, чтобы была обоснована генерализация выводов выборочного исследования — обобщение, распространение их на генеральную совокупность. Основные критерии обо-снованности выводов исследования это репрезентативность выборки и ста-тистическая достоверность (эмпирических) результатов.

Репрезентативность выборки — иными словами, ее представительность — это способность выборки представлять изучаемые явления достаточно пол-но — с точки зрения их изменчивости в генеральной совокупности.

Конечно, полное представление об изучаемом явлении, во всем его диапа-зоне и нюансах изменчивости, может дать только генеральная совокупность. Поэтому репрезентативность всегда ограничена в той мере, в какой ограни-чена выборка. И именно репрезентативность выборки является основным кри-терием при определении границ генерализации выводов исследования. Тем не менее, существуют приемы, позволяющие получить достаточную для ис-следователя репрезентативность выборки (Эти приемы изучаются в курсе «Экспериментальная психология»).


Первый и основной прием — это простой случайный (рандомизированный) отбор. Он предполагает обеспечение таких условий, чтобы каждый член генеральной совокупности имел равные с другими шансы попасть в выборку. Слу-чайный отбор обеспечивает возможность попадания в выборку самых разных представителей генеральной совокупности. При этом принимаются специ-альные меры, исключающие появление какой-либо закономерности при отборе. И это позволяет надеяться на то, что в конечном итоге в выборке изу-чаемое свойство будет представлено если и не во всем, то в максимально воз-можном его многообразии.

Второй способ обеспечения репрезентативности — это стратифицирован-ный случайный отбор, или отбор по свойствам генеральной совокупности. Он предполагает предварительное определение тех качеств, которые могут вли-ять на изменчивость изучаемого свойства (это может быть пол, уровень дохо-да или образования и т. д.). Затем определяется процентное соотношение чис-ленности различающихся по этих качествам групп (страт) в генеральной совокупности и обеспечивается идентичное процентное соотношение соот-ветствующих групп в выборке. Далее в каждую подгруппу выборки испытуе-мые подбираются по принципу простого случайного отбора.

Статистическая достоверность , или статистическая значимость, результа-тов исследования определяется при помощи методов статистического выво-да.

Застрахованы ли мы от принятия ошибок при принятии решений, при тех или иных выводах из результатов исследования? Конечно, нет. Ведь наши решения опираются на результаты исследования выборочной совокупности, а также на уровень наших психологических знаний. Полностью мы не застрахованы от ошибок. В статистике такие ошибки считаются допустимыми, если они имеют место не чаще чем в одном случае из 1000 (вероятность ошибки α=0,001 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,999); в одном случае из 100 (вероятность ошибки α=0,01 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,99) или в пяти случаях из 100 (вероятность ошибки α=0,05 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,95). Именно на двух последних уровнях и принято принимать решения в психологии.

Иногда, говоря о статистической достоверности, используют понятие «уровень значимости» (обозначается как α). Численные значения р и α дополняют друг друга до 1,000 — полный набор событий: либо мы сделали правильный вывод, либо мы ошиблись. Эти уровни не рассчитываются, они заданы. Уровень значимости можно понимать как некую «красную» линию», пересечение которой позволит говорить о данном событии как о неслучайном. В каждом грамотном научном отчете или публикации сделанные выводы должны сопровождаться указанием значений р или α, при которых сделаны выводы.

Методы статистического вывода подробно рассматриваются в курсе «Математической статистики». Сейчас лишь отметим, что они предъявляют определенные требования к численности, или объему выборки.

К сожалению, строгих рекомендаций по предварительному определению требуемого объема выборки не существует. Более того, ответ на вопрос о не-обходимой и достаточной ее численности исследователь обычно получает слишком поздно — только после анализа данных уже обследованной выбор-ки. Тем не менее, можно сформулировать наиболее общие рекомендации:

1. Наибольший объем выборки необходим при разработке диагностичес-кой методики — от 200 до 1000-2500 человек.

2. Если необходимо сравнивать 2 выборки, их общая численность должна быть не менее 50 человек; численность сравниваемых выборок должна быть приблизительно одинаковой.

3. Если изучается взаимосвязь между какими-либо свойствами, то объем выборки должен быть не меньше 30-35 человек.

4. Чем больше изменчивость изучаемого свойства , тем больше должен быть объем выборки. Поэтому изменчивость можно уменьшить, увеличивая однородность выборки, например, по полу, возрасту и т. д. При этом, естественно, уменьшаются возможности генерализации выводов.

Зависимые и независимые выборки. Обычна ситуация исследования, когда интересующее исследователя свойство изучается на двух или более выборках с целью их дальнейшего сравнения. Эти выборки могут находиться в различ-ных соотношениях — в зависимости от процедуры их организации. Независи-мые выборки характеризуются тем, что вероятность отбора любого испытуе-мого одной выборки не зависит от отбора любого из испытуемых другой выборки. Напротив, зависимые выборки характеризуются тем, что каждому испытуемому одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки.

В общем случае зависимые выборки предполагают попарный подбор ис-пытуемых в сравниваемые выборки, а независимые выборки — независимый отбор испытуемых.

Следует отметить, что случаи «частично зависимых» (или «частично неза-висимых») выборок недопустимы: это непредсказуемым образом нарушает их репрезентативность.

В заключение отметим, что можно выделить две парадигмы психологи-ческого исследования.

Так называемая R-методология предполагает изучение изменчивости некоторого свойства (психологического) под влиянием неко-торого воздействия, фактора либо другого свойства. Выборкой является мно-жество испытуемых.

Другой подход, Q-методология, предполагает исследо-вание изменчивости субъекта (единичного) под влиянием различных стимулов (условий, ситуаций и т. д.). Ей соответствует ситуация, когда выборкой явля-ется множество стимулов.

Уровень значимости в статистике является важным показателем, отражающим степень уверенности в точности, истинности полученных (прогнозируемых) данных. Понятие широко применяется в различных сферах: от проведения социологических исследований, до статистического тестирования научных гипотез.

Определение

Уровень статистической значимости (или статистически значимый результат) показывает, какова вероятность случайного возникновения исследуемых показателей. Общая статистическая значимость явления выражается коэффициентом р-value (p-уровень). В любом эксперименте или наблюдении существует вероятность, что полученные данные возникли из-за ошибок выборки. Особенно это актуально для социологии.

То есть статистически значимой является величина, чья вероятность случайного возникновения крайне мала либо стремится к крайности. Крайностью в этом контексте считают степень отклонения статистики от нуль-гипотезы (гипотезы, которую проверяют на согласованность с полученными выборочными данными). В научной практике уровень значимости выбирается перед сбором данных и, как правило, его коэффициент составляет 0,05 (5 %). Для систем, где крайне важны точные значения, этот показатель может составлять 0,01 (1 %) и менее.

История вопроса

Понятие уровня значимости было введено британским статистиком и генетиком Рональдом Фишером в 1925 году, когда он разрабатывал методику проверки статистических гипотез. При анализе какого-либо процесса существует определенная вероятность тех либо иных явлений. Трудности возникают при работе с небольшими (либо не очевидными) процентами вероятностей, подпадающими под понятие «погрешность измерений».

При работе со статистическими данными, недостаточно конкретными, чтобы их проверить, ученые сталкивались с проблемой нулевой гипотезы, которая «мешает» оперировать малыми величинами. Фишер предложил для таких систем определить вероятность событий в 5 % (0,05) в качестве удобного выборочного среза, позволяющего отклонить нуль-гипотезу при расчетах.

Введение фиксированного коэффициента

В 1933 году ученые Ежи Нейман и Эгон Пирсон в своих работах рекомендовали заранее (до сбора данных) устанавливать определенный уровень значимости. Примеры использования этих правил хорошо видны во время проведения выборов. Предположим, есть два кандидата, один из которых очень популярен, а второй – малоизвестен. Очевидно, что первый кандидат выборы выиграет, а шансы второго стремятся к нулю. Стремятся – но не равны: всегда есть вероятность форс-мажорных обстоятельств, сенсационной информации, неожиданных решений, которые могут изменить прогнозируемые результаты выборов.

Нейман и Пирсон согласились, что предложенный Фишером уровень значимости 0,05 (обозначаемый символом α) наиболее удобен. Однако сам Фишер в 1956 году выступил против фиксации этого значения. Он считал, что уровень α должен устанавливаться в соответствии с конкретными обстоятельствами. Например, в физике частиц он составляет 0,01.

Значение p-уровня

Термин р-value впервые использован в работах Браунли в 1960 году. P-уровень (p-значение) является показателем, находящимся в обратной зависимости от истинности результатов. Наивысший коэффициент р-value соответствует наименьшему уровню доверия к произведенной выборке зависимости между переменными.

Данное значение отражает вероятность ошибок, связанных с интерпретацией результатов. Предположим, p-уровень = 0,05 (1/20). Он показывает пятипроцентную вероятность того, что найденная в выборке связь между переменными – всего лишь случайная особенность проведенной выборки. То есть, если эта зависимость отсутствует, то при многократных подобных экспериментах в среднем в каждом двадцатом исследовании можно ожидать такую ​​же либо большую зависимость между переменными. Часто p-уровень рассматривается в качестве «допустимой границы» уровня ошибок.

Кстати, р-value может не отражать реальную зависимость между переменными, а лишь показывает некое среднее значение в пределах допущений. В частности, окончательный анализ данных будет также зависеть от выбранных значений данного коэффициента. При p-уровне = 0,05 будут одни результаты, а при коэффициенте, равном 0,01, другие.

Проверка статистических гипотез

Уровень статистической значимости особенно важен при проверке выдвигаемых гипотез. Например, при расчетах двустороннего теста область отторжения разделяют поровну на обоих концах выборочного распределения (относительно нулевой координаты) и высчитывают истинность полученных данных.

Предположим, при мониторинге некоего процесса (явления) выяснилось, что новая статистическая информация свидетельствует о небольших изменениях относительно предыдущих значений. При этом расхождения в результатах малы, не очевидны, но важны для исследования. Перед специалистом встает дилемма: изменения реально происходят или это ошибки выборки (неточность измерений)?

В этом случае применяют либо отвергают нулевую гипотезу (списывают все на погрешность, или признают изменение системы как свершившийся факт). Процесс решения задачи базируется на соотношении общей статистической значимости (р-value) и уровня значимости (α). Если р-уровень < α, значит, нулевую гипотезу отвергают. Чем меньше р-value, тем более значимой является тестовая статистика.

Используемые значения

Уровень значимости зависит от анализируемого материала. На практике используют следующие фиксированные значения:

  • α = 0,1 (или 10 %);
  • α = 0,05 (или 5 %);
  • α = 0,01 (или 1 %);
  • α = 0,001 (или 0,1 %).

Чем более точными требуются расчеты, тем меньший коэффициент α используется. Естественно, что статистические прогнозы в физике, химии, фармацевтике, генетике требуют большей точности, чем в политологии, социологии.

Пороги значимости в конкретных областях

В высокоточных областях, таких как физика частиц и производственная деятельность, статистическая значимость часто выражается как соотношение среднеквадратического отклонения (обозначается коэффициентом сигма – σ) относительно нормального распределения вероятностей (распределение Гаусса). σ – это статистический показатель, определяющий рассеивание значений некой величины относительно математических ожиданий. Используется для составления графиков вероятности событий.

В зависимости от области знаний, коэффициент σ сильно разнится. Например, при прогнозировании существования бозона Хиггса параметр σ равен пяти (σ=5), что соответствует значению р-value=1/3,5 млн. При исследованиях геномов уровень значимости может составлять 5×10 -8 , что не являются редкостью для этой области.

Эффективность

Необходимо учитывать, что коэффициенты α и р-value не являются точными характеристиками. Каким бы ни был уровень значимости в статистике исследуемого явления, он не является безусловным основанием для принятия гипотезы. Например, чем меньше значение α, тем больше шанс, что устанавливаемая гипотеза значима. Однако существует риск ошибиться, что уменьшает статистическую мощность (значимость) исследования.

Исследователи, которые зацикливаются исключительно на статистически значимых результатах, могут получить ошибочные выводы. При этом перепроверить их работу затруднительно, так как ими применяются допущения (коими фактически и являются значения α и р-value). Поэтому рекомендуется всегда, наряду с вычислением статистической значимости, определять другой показатель – величину статистического эффекта. Величина эффекта – это количественная мера силы эффекта.

Статистическая значимость

Результаты, полученные с помощью определенной процедуры исследования, называют статистически значимыми , если вероятность их случайного появления очень мала. Эту концепцию можно проиллюстрировать на примере кидания монеты. Предположим, что монету подбросили 30 раз; 17 раз выпал «орел» и 13 раз выпала «решка». Является ли значимым отклонение этого результата от ожидаемого (15 выпадений «орла» и 15 - «решки»), или это отклонение случайно? Чтобы ответить на этот вопрос, можно, например, много раз кидать ту же монету по 30 раз подряд, и при этом отмечать, сколько раз повторится соотношение «орлов» и «решек», равное 17:13. Статистический анализ избавляет нас от этого утомительного процесса. С его помощью после первых 30 киданий монеты можно произвести оценку возможного числа случайных выпадений 17 «орлов» и 13 «решек». Такая оценка называется вероятностным утверждением.

В научной литературе по индустриально-организационной психологии вероятностное утверждение в математической форме обозначается выражением р (вероятность) < (менее) 0,05 (5 %), которое следует читать как «вероятность менее 5 %». В примере с киданием монеты это утверждение будет означать, что если исследователь проведет 100 опытов, каждый раз кидая монету по 30 раз, то он может ожидать случайного выпадения комбинации из 17 «орлов» и 13 «решек» менее, чем в 5 опытах. Этот результат будет сочтен статистически значимым, поскольку в индустриально-организационной психологии уже давно приняты стандарты статистической значимости 0,05 и 0,01 (р < 0,01). Этот факт важен для понимания литературы, но не следует считать, что он говорит о бессмысленности проведения наблюдений, не соответствующих этим стандартам. Так называемые незначимые результаты исследований (наблюдения, которые можно получить случайно более одного или пяти раз из 100) могут быть весьма полезными для выявления тенденций и как руководство к будущим исследованиям.

Необходимо также заметить, что не все психологи соглашаются с традиционными стандартами и процедурами (например, Cohen, 1994; Sauley & Bedeian, 1989). Вопросы, связанные с измерениями, сами по себе являются главной темой работы многих исследователей, изучающих точность методов измерений и предпосылки, которые лежат в основе существующих методов и стандартов, а также разрабатывают новые медики и инструменты. Может быть, когда-нибудь в будущем исследования в этой власти приведут к изменению традиционных стандартов оценки статистической значимости, и эти изменения завоюют всеобщее признание. (Пятое отделение Американской психологической ассоциации объединяет психологов, которые специализируются на изучении оценок, измерений и статистики.)

В отчетах об исследованиях вероятностное утверждение, такое как р < 0,05, связано некоторой статистикой, то есть числом, которое получено в результате проведения определенного набора математических вычислительных процедур. Вероятностное подтверждение получают путем сравнения этой статистики с данными из специальных таблиц, которые публикуются для этой цели. В индустриально-организационных психологических исследованиях часто встречаются такие статистики, как r, F, t, г> (читается «хи квадрат») и R (читается «множественный R»). В каждом случае статистику (одно число), полученную в результате анализа серии наблюдений, можно сравнить числами из опубликованной таблицы. После этого можно сформулировать вероятностное утверждение о вероятности случайного получения этого числа, то есть сделать вывод о значимости наблюдений.

Для понимания исследований, описанных в этой книге, достаточно иметь ясное представление о концепции статистической значимости и необязательно знать, как рассчитываются упомянутые выше статистики. Однако было бы полезно обсудить одно предположение, которое лежит в основе всех этих процедур. Это предположение о том, что все наблюдаемые переменные распределяются приблизительно по нормальному закону. Кроме того, при чтении отчетов об индустриально-организационных психологических исследованиях часто встречаются еще три концепции, которые играют важную роль - во-первых, корреляция и корреляционная связь, во-вторых, детерминант/ предсказывающая переменная и «ANOVA» (дисперсионный анализ), в-третьих, группа статистических методов под общим названием «метаанализ».

Статистическая значимость результата (p-значение) представляет собой оцененную меру уверенности в его «истинности» (в смысле «репрезентативности выборки»). Выражаясь более технически, p-значение ‑ это показатель, находящийся в убывающей зависимости от надежности результата. Более высокое p-значение соответствует более низкому уровню доверия к найденной в выборке зависимости между переменными. Именно, p-значение представляет собой вероятность ошибки, связанной с распространением наблюдаемого результата на всю популяцию. Например, p-значение=0.05 (т.е. 1/20) показывает, что имеется 5% вероятность, что найденная в выборке связь между переменными является лишь случайной особенностью данной выборки. Иными словами, если данная зависимость в популяции отсутствует, а вы многократно проводили бы подобные эксперименты, то примерно в одном из двадцати повторений эксперимента можно было бы ожидать такой же или более сильной зависимости между переменными.

Во многих исследованиях p-значение=0.05 рассматривается как «приемлемая граница» уровня ошибки.

Не существует никакого способа избежать произвола при принятии решения о том, какой уровень значимости следует действительно считать «значимым». Выбор определенного уровня значимости, выше которого результаты отвергаются как ложные, является достаточно произвольным. На практике окончательное решение обычно зависит от того, был ли результат предсказан априори (т.е. до проведения опыта) или обнаружен апостериорно в результате многих анализов и сравнений, выполненных с множеством данных, а также на традиции, имеющейся в данной области исследований. Обычно во многих областях результат p 0.05 является приемлемой границей статистической значимости, однако следует помнить, что этот уровень все еще включает довольно большую вероятность ошибки (5%). Результаты, значимые на уровне p 0.01 обычно рассматриваются как статистически значимые, а результаты с уровнем p 0.005 или p 0.001 как высоко значимые. Однако следует понимать, что данная классификация уровней значимости достаточно произвольна и является всего лишь неформальным соглашением, принятым на основе практического опыта в той или иной области исследования.

Как было уже сказано, величина зависимости и надежность представляют две различные характеристики зависимостей между переменными. Тем не менее, нельзя сказать, что они совершенно независимы. Говоря общим языком, чем больше величина зависимости (связи) между переменными в выборке обычного объема, тем более она надежна.

Если предполагать отсутствие зависимости между соответствующими переменными в популяции, то наиболее вероятно ожидать, что в исследуемой выборке связь между этими переменными также будет отсутствовать. Таким образом, чем более сильная зависимость обнаружена в выборке, тем менее вероятно, что этой зависимости нет в популяции, из которой она извлечена.


Объем выборки влияет на значимость зависимости. Если наблюдений мало, то соответственно имеется мало возможных комбинаций значений этих переменных и таким образом, вероятность случайного обнаружения комбинации значений, показывающих сильную зависимость, относительно велика.

Как вычисляется уровень статистической значимости. Предположим, вы уже вычислили меру зависимости между двумя переменными (как объяснялось выше). Следующий вопрос, стоящий перед вами: «насколько значима эта зависимость?» Например, является ли 40% объясненной дисперсии между двумя переменными достаточным, чтобы считать зависимость значимой? Ответ: «в зависимости от обстоятельств». Именно, значимость зависит в основном от объема выборки. Как уже объяснялось, в очень больших выборках даже очень слабые зависимости между переменными будут значимыми, в то время как в малых выборках даже очень сильные зависимости не являются надежными. Таким образом, для того чтобы определить уровень статистической значимости, вам нужна функция, которая представляла бы зависимость между «величиной» и «значимостью» зависимости между переменными для каждого объема выборки. Данная функция указала бы вам точно «насколько вероятно получить зависимость данной величины (или больше) в выборке данного объема, в предположении, что в популяции такой зависимости нет». Другими словами, эта функция давала бы уровень значимости (p-значение), и, следовательно, вероятность ошибочно отклонить предположение об отсутствии данной зависимости в популяции. Эта «альтернативная» гипотеза (состоящая в том, что нет зависимости в популяции) обычно называется нулевой гипотезой. Было бы идеально, если бы функция, вычисляющая вероятность ошибки, была линейной и имела только различные наклоны для разных объемов выборки. К сожалению, эта функция существенно более сложная и не всегда точно одна и та же. Тем не менее, в большинстве случаев ее форма известна, и ее можно использовать для определения уровней значимости при исследовании выборок заданного размера. Большинство этих функций связано с очень важным классом распределений, называемым нормальным.

Задачей статистического исследования является выявление закономерностей, лежащих в природе исследуемых явлений. Показатели и средние величины должны служить отображением действительности, для чего необходимо определять степень их достоверности. Правильное отображение выборочной совокупностью генеральной совокупности называется репрезентативностью. Мерой точности и достоверности выборочных статистических величин являются средние ошибки представительности (репрезентативности), которые зависят от численности выборки и степени разнообразия выборочной совокупности по исследуемому признаку.

Поэтому для определения степени достоверности результатов статистического исследования необходимо для каждой относительной и средней величины вычислить соответствующую среднюю ошибку. Средняя ошибка показателя m p вычисляется по формуле:

При числе наблюдений менее 30, где

P - величина показателя в процентах, промилле и т.д.

q - дополнение этого показателя до 100, если он в процентах, до 1000, если % 0 и т.д. (т.е. q = 100–P, 1000–P и т.д.)

Например, известно, что в районе в течение года заболело дизентерией 224 человека. Численность населения ― 33000. Показатель заболеваемости дизентерией на

Средняя ошибка этого показателя

Для решения вопроса о степени достоверности показателя определяют доверительный коэффициент (t), который равен отношению показателя к его средней ошибке, т.е.

В нашем примере

Чем выше t, тем больше степень достоверности. При t=1, вероятность достоверности показателя равна 68,3%, при t=2 ― 95,5%, при t=3 ― 99,7%. В медико-статистических исследованиях обычно используют доверительную вероятность (надежность), равную 95,5%–99,0%, а в наиболее ответственных случаях – 99,7%. Таким образом в нашем примере показатель заболеваемости достоверен.

При числе наблюдений менее 30, значение критерия определяется по таблице Стьюдента. Если полученная величина будет выше или равна табличной ― показатель достоверен. Если ниже ― не достоверен.

При необходимости сравнения двух однородных показателей достоверность их различий определяется по формуле:

(от большего числа отнимают меньшее),

где P 1 –P 2 ― разность двух сравниваемых показателей,

― средняя ошибка разности двух показателей.

Например, в районе Б в течении года заболело дизентерией 270 человек. Население района ― 45000. Отсюда заболеваемость дизентерией:

т.е. показатель заболеваемости достоверен.

Как видно, заболеваемость в районе Б ниже, чем в районе А. Определяем по формуле достоверность разницы двух показателей:

При наличии большого числа наблюдений (более 30) разность показателей является статистически достоверной, если t = 2 или больше. Таким образом, в нашем примере заболеваемость в районе А достоверно выше, т.к. доверительный коэффициент (t) больше 2.

Зная величину средней ошибки показателя, можно определить доверительные границы этого показателя в зависимости от влияния причин случайного характера. Доверительные границы определяются по формуле:

P ― показатель;

m ― его средняя ошибка;

t ― доверительный коэффициент выбирается в зависимости от требуемой величины надежности: t=1 соответствует надежности результата в 68,3% случаев, t=2 – 95,5%, t=2,6 – 99%, t=3 – 99,7%, t=3,3 – 99,9Величина называется предельной ошибкой.

Например, в районе Б показатель заболеваемости дизентерией с точностью до 99,7 9 % может колебаться в связи со случайными факторами в пределах т.е. от 49,1 до 70,9 .