Какие бывают телескопы для наблюдения вселенной. Оптические телескопы — виды, классификация, оптические схемы Какие бывают телескопы

Астрономия приобретает все большую популярность среди любителей. Наблюдать за небесными телами становится проще ввиду огромного разнообразия приспособлений, использующихся для этих целей. Прежде всего речь идет о телескопах.

Об их особенностях, разновидностях, параметрах и правилах выбора пойдет речь ниже, а начать хотелось бы с того, что каждому прибору есть свое применение, нужно лишь перед покупкой четко сформулировать требования и задачи.

Актуальные вопросы

Выбор телескопа базируется на изучении множества параметров и технических характеристик, однако прежде, чем перейти к их анализу, необходимо решить базовые вопросы.

Что вы хотите увидеть

С помощью хорошего телескопа можно следить за:

Близкими объектами, расположенными в пределах солнечной системы (кометы, планеты, их спутники, солнце и так далее);

Далекими галактиками, туманностями;

Объектами, расположенными на земле.

Безусловно, универсального прибора, который позволил бы охватить все виды наблюдений, не найти, а значит, нужно решить, что будет для вас в приоритете.

Откуда планируете наблюдать

Наверняка вы замечали, что за городом небо выглядит по-особенному. Это видно без специализированного оборудования. Если же вы хотите сделать поездку невероятно интересной и романтичной, захватите с собой телескоп. Для этих целей подойдет модель, которая легко складывается, имеет компактный размер и помещается в сумку.

Для изучения небесных тел из окна квартиры подойдет прибор для близких исследований - в огнях мегаполиса практически нереально разглядеть далекие галактики и туманности.

Пожалуй, наилучшие условия созданы на даче. В таком случае телескоп может быть достаточно объемным, ведь нет необходимости все время перемещать его. Кроме того, вдали от городской иллюминации можно без труда рассмотреть далекие небесные тела, а значит, лучше приобретать прибор с максимальным приближением.

Теоретический базис

Для понимания того, как функционирует телескоп, стоит разобраться с его строением. В числе главных составляющих

. Тубус (труба) - основная часть телескопа, в которой находится объектив. Она может быть открытой или закрытой. Второй вариант предпочтителен, так как защищает телескоп от пыли. Кроме того, такая конструкция не подвержена влиянию потоков воздуха, которые могут существенно ухудшать качество изображения. Тубусы могут иметь разную длину и вес.

. Объектив - главная деталь телескопа, собирающая свет и детализирующая небесные тела.

. Искатель - уменьшенная копия подзорной трубы, которая используется для предварительного обнаружения небесного тела.

. Окуляры - это своего рода лупы, которые позволяют рассматривать предмет, попавший в объектив телескопа. Они характеризуются различными фокусным расстоянием и углом обзора. Для обычных - 40-55 град., широкоугольных и сверхширокоугольных 55-65 град. и 65-80 град. соответственно, ультраширокоугольных - 80 град. и выше. Наиболее комфортны окуляры с большим выносом зрачка.

. Монтировка - это «фундамент» телескопа, механизм, который позволяет наводить его на разные объекты, обеспечивая неподвижность. Монтировка может быть азимутальной (проста в использовании, не требует долгой настройки, имеет 2 оси, подходит для изучения наземных объектов, обзорных наблюдений за небесными телами) и экваториальной (универсальная, позволяет перемещать объектив по полярной оси, зачастую оснащается электрическим приводом и управляется с пульта).

В отдельную категорию выделяют монтировки Добсона, хотя на самом деле они относятся к азимутальным. Они обеспечивают наилучшую апертуру и при этом остаются достаточно компактными и доступными по цене. Наиболее дискуссионные механизмы - так называемые Go-To монтировки. Они создают компьютеризированное наблюдение за небесными телами, что вызывает негодование у многих астрономов, ведь истинное удовольствие приносит поиск объектов по картам и координатам. С другой стороны, автоматизированный подход существенно экономит время.

. Линза Барлоу - оптика, увеличивающая эффективное фокусное расстояние телескопа посредством уменьшения сходимости конуса светового пучка. Это полезный аксессуар, который чаще всего используется с короткофокусными устройствами.

Существует распространенное заблуждение касательно того, что работа телескопа основана на приближении объектов. Это не совсем верно. Принцип его функционирования - в сборе света и направлении его в фокус. Из этого следует, что главный критерий - площадь светоаккумулирующего элемента. Чем она больше, тем больше света собирает телескоп, что в конечном счете обеспечивает лучшую детализацию небесных тел. Именно размер линзы или зеркала влияет на качество изображения, а не сила телескопа или увеличение, хотя эти параметры также важны.

Апертура

Диаметр объектива телескопа - ключевой показатель, отвечающий за детализацию изображения. Чем больше апертура, тем ярче будут небесные тела, даже те, которые расположены совсем далеко и выглядят тускло. При использовании телескопа в городских условиях достаточно линзы или зеркала диаметром 120-150 мм. С таким устройством удастся понаблюдать за объектами Солнечной системы.

Разглядеть туманности и галактики позволит телескоп с апертурой от 200 мм и более. Самые большие модели (по диаметру объектива) идеально подходят для наблюдения за звездами вдали от города, где достаточно темно и нет преград для наслаждения небесными просторами. Такие устройства наиболее дорогие.

Фокусное расстояние

Одна из главных характеристик - расстояние между самим объективом и главным фокусом, измеряемое в миллиметрах. На основании фокусного расстояния окуляра и непосредственно телескопа рассчитывают увеличение (путем деления второго на первое). Предпочтение следует отдавать моделям с большим значением параметра. На телескопах с маленьким фокусным расстоянием труднее получить большое увеличение и обеспечить хорошее качество изображения.

Относительное отверстие

Рассматривая основные параметры, наряду с диаметром объектива и фокусным расстоянием, следует выделить еще один - относительное отверстие. Это величина, равная отношению фокусного к диаметру. Так, для телескопа с диаметром объектива 200 мм и фокусным расстоянием в 1200 мм, относительное отверстие составит 1/6. От этого значения и более телескоп считается быстрым, менее 1/9 - медленным, в диапазоне 1/6-1/9 - средним. При равной апертуре у телескопа с меньшим отверстием будет более длинный тубус, что, в свою очередь, увеличит габариты. Быстрые телескопы более требовательны к окулярам, в то время как с медленными и средними удается получить хорошее изображение при использовании среднестатистического широкоугольного окуляра.

Понятие термостабилизации

Четкий снимок возможен лишь в том случае, если предварительно привести прибор в температурный баланс с окружающей средой. Сколько времени потребуется для этого? Все зависит от параметров телескопа. Временной интервал (при иных равных условиях) увеличивается по мере увеличения апертуры.

Виды телескопов

Исходя из оптической схемы, все приборы делят на три группы:


Рефракторы. Устройства с линзовыми объективами до 120 мм, оптимальны для изучения Луны. Они дают хорошую детализацию и не требуют пошаговой настройки. Главный недостаток - появление хроматической аберрации. Устранить искажение позволит точный расчет параметров линз, расстояния между ними и оправы объектива. Для этих же целей рекомендуют низкодисперсные стекла.

Рефлекторы. Роль объектива в таком приборе выполняет вогнутое стекло. Световой поток отражается, затем собирается главным зеркалом. Устройство требует грамотной настройки, подходит для слежения за далекими небесными телами и туманностями. В числе наиболее популярных - системы Кассегрена и Ньютона.

Катадиоптрики. Это зеркально-линзовые устройства с коротким тубусом и неограниченной апертурой. Они объединили достоинства первых двух разновидностей. В таких моделях компенсированы искажения небесных тел. Телескопы подходят для астрографии и изучения глубокого космоса.

Телескопы для астрофотографии

Устройства, применяемые в астрофотографии, имеют специфические характеристики. В приоритете качество оптической схемы и грамотность настроек. Диаметр объектива должен быть максимальным. Даже при короткой выдержке можно получить качественный снимок за счет аккумуляции большего количества света. Рекомендуют использовать телескопы с экваториальной монтировкой, автоматический привод которых поможет удержать в поле зрения движущиеся тела.

Для астрофотографии подойдут приборы зеркально-линзового типа. У них больше длина фокуса, апертура, а значит, снимок получится более четким.

Детские телескопы

Астрономией интересуются не только взрослые, но и дети. Безусловно, основы выбора телескопов для них несколько отличаются от стандартных «взрослых» критериев. Первый прибор можно смело приобретать ребенку уже в возрасте 8-10 лет. Это должно быть простое устройство, с которым малыш справится самостоятельно.

Оптимален - рефрактор. Он надежен, не требователен в уходе и доступен по цене. Азимутальная монтировка позволит рассмотреть как небо, так и наземные объекты. Для этих целей будет достаточно объектива с апертурой 70 мм. У большинства производителей есть отдельные линейки для юных астрономов.

Распространенные ошибки

В сознании многих неопытных астрономов укрепилось не совсем корректное правило «больше - лучше». Крупногабаритные телескопы далеко не всегда дают хороший результат, в особенности в условиях квартирного использования. В такой ситуации стоит приобрести компактную модель, которую без труда можно будет перемещать в разные точки дома, выбирая оптимальное место для наблюдения.

Еще одна распространенная ошибка - покупка прибора «раз и навсегда». Универсальных устройств не бывает и не стоит пытаться купить телескоп на перспективу. Каждый прибор хорош для определенных целей. Пока вы только осваиваете процесс, стоит присмотреться и задуматься о покупке компактной модели, которая не требует настройки (например, рефрактор с диаметром 90-120 мм). Со временем можно четче сформировать свои потребности и купить более дорогую и функциональную модель телескопа.

Наблюдения являются фундаментальными измерениями астрономии как науки. Они сопоставляются с данными и теориями, полученными в лабораториях астрофизиками и другими учеными-физиками для проверки доказуемых предсказаний.

Астрономы находятся в уникальном положении среди ученых, поскольку они не могут проводить эксперименты непосредственно на предметах своих исследований. Астрономы должны ждать фотонов (теперь и других форм неэлектромагнитного излучения), чтобы эти излучения прошли через Вселенную к Земле и человек увидел их с помощью одного из устройств.

Ключ к совершению открытий – наличие соответствующего телескопа в соответствующем месте, чтобы засвидетельствовать эти фотоны и историю их появления.

На протяжении большей части человеческой истории астрономические наблюдения проводились за пределами того, что можно увидеть с помощью глаз.
Некоторые базовые знания, какие бывают телескопы для фундаментальной астрономии или для личного наблюдения будут рассмотрены в этой статье. Подробная информация про эти устройства сконцентрирована на https://www.4glaza.ru/katalog/teleskopy/veber/

Уникальность инструмента для наблюдения небесных объектов

В течение многих лет телескопы использовались для наблюдения небесных объектов. Эти приборы за наблюдением удаленных объектов изменили наше понимание и знания про объекты во Вселенной. Учеными и инженерами проводятся новые разработки, основанные на измерении параметров длины волны, пришедшей с небесных объектов, с улучшенной технологией создания многих видов телескопов.

Существуют различные виды этого инструмента от бытовых оптических изготавливаемых компанией Veber до сложнейших рентгеновских изготавливаемых в интересах управления по аэронавтике и исследованию космического пространства NASA, Европейского космического агентства ESA или Российского Роскосмоса. Изучение различных стадий звезд в деталях может быть сделано с помощью этих приборов, которые используются для конкретных целей.

Эта статья будет касаться вопроса какие бывают телескопы, а также функции и их предназначения для анализа сигналов нашей Вселенной.

История

С семнадцатого века устройства за наблюдениями за небом стали одним из важных инструментов для выявления неожиданных явлений во Вселенной.

Противоречие между традиционной геоцентрической астрономией и теми, кто предпочитал гелиоцентрическую систему Коперника, оказало большое влияние на открытие телескопа.

Первоначально изобретение телескопа было прототипом современных научных приборов, а не изобретением ученых. Прибор дал людям возможность наблюдать вещи, которые человечество никогда не видело прежде, увеличивая человеческие чувства и знание объектов в космическом пространстве. Мастера создали инструмент, который мы называем телескопом. Использование выпуклых и вогнутых объектов для увеличения и уменьшения было известно с древности.

На Западе в конце тринадцатого века линзы стали популярными. Галилей был первым, кто использовал рефракционный прибор в качестве инструмента для наблюдения планет, лун и звезд в 1609 году. Галилей употребил греческий термин “теле” как далеко и “скопейн” как смотреть, для названия инструментов для наблюдения за небом. Галилей доказал, что предсказанная гелиоцентрическая модель Солнечной системы была правильной. Он продемонстрировал, что Венера показала полный набор фаз, подобных Луне. Открытие Галилея также доказало, что модель Птолемея была невозможна из его наблюдений.

Открытия Галилея изменили наше понимание Вселенной благодаря его наблюдениям, сделанным с помощью телескопа. Кроме того новые объекты в небе были обнаружены, когда Галилей использовал оптический инструмент, чтобы доказать гелиоцентрический вид.

Типы телескопов

Длины волн или электромагнитного излучения от объектов Вселенной отличаются. Поэтому приборы за наблюдением удаленных объектов классифицируются по конструкции. Они бывают оптического, рентгеновского, инфракрасного диапазонов, а также радиотелескопы.

Оптические

Оптические телескопы являются наиболее распространенными, поскольку они в основном используются для наблюдения удаленных объектов с видимой частью электромагнитного спектра видимого света. Поскольку видимый свет можно наблюдать с Земли, большинство оптических телескопов могут быть установлены на земле.

Некоторые атмосферные искажения могут привести к тому, что наблюдения не будут точными для профессионалов.

Рентгеновские

Излучение от удаленных объектов и более коротких длин волн обнаруживаются с помощью рентгеновских телескопов которые расположены на космических аппаратах. Их расположение на космических аппаратах связано с те, что атмосфера непрозрачна и поэтому блокирует любые гамма-лучи, рентгеновские лучи, а ультрафиолетовый свет можно использовать только в космосе, поэтому нет рентгеновских телескопов расположенных на земле.

Радиотелескопы

Другими распространенными типами телескопов, которые могут быть установлены на Земле, являются радиотелескопы, которые используются для радиоастрономии. Поскольку они могут принимать радиоволны от Вселенной антенны открыты и относительно большие. Поскольку атмосфера не блокирует радиоволны, радиотелескоп не нужно устанавливать над атмосферой Земли. Радиотелескоп может использоваться для наблюдения таких объектов, как квазары. Чтобы определить космологическое красное смещение можно изучать квазары и галактики с помощью спектроскопии. Это помогает отображать структуру Вселенной, потому что красное смещение пропорционально расстоянию.

Оптические и радиотелескопы часто расположены в горах или за пределами городской черты, поскольку электромагнитное и световое загрязнение от городов может повлиять на результат наблюдений.

Так, например, чтобы не влияли помехи на наблюдение используемое радиотелескопами в гористой местности штата Нью-Мексико, США построено очень много радиотелескопов, которые используются, в основном, для наблюдения протопланетных дисков вокруг молодых звезд и черных дыр. Этот комплекс для наблюдения Вселенной специально был создан за пределами городов, чтобы избежать влияние во время наблюдения при исследовании многих астрономических объектов.

Телескопы на спутниках

Ученые использовали наземные телескопы, чтобы увидеть видимый свет и радиоволны от звезды.
Для изучения Вселенной на всех длинах волн и без размытия и затемнения атмосферы Земли ученые используют спутники с телескопами.

Многие объекты, находящиеся на разных стадиях развития во Вселенной излучают электромагнитные волны, поэтому телескопы различных типов могут предоставлять снимки этих объектов. Ученые могут изучать радиоволны от молодых звезд, чтобы увидеть рождение звезд или смерть звезд, когда используются рентгеновские аппараты, потому что эти звезды часто излучают рентгеновские лучи. Наземные комплексы в этом диапазоне вносят искажения изображений, и при этом невозможно изучать крупномасштабные изображения галактик.

Космическая обсерватория Хаббл с 1991 года является еще одним типичным примером, который может глубоко изучать область неба, чтобы выявить галактики на ранних стадиях их эволюции. Он может собирать более точные и детальные изображения без отсутствия атмосферных искажений.

Другим примером является космическая обсерватория Чандра NASA с 1999 года. С помощью спутниковой обсерватории Чандра составлена карта горячего газа в скоплениях галактик и проводятся исследования черных дыр по всей Вселенной.

Обсерватория Чандра предоставила детальное исследование рентгеновского неба. С помощью этих данных проводится изучение темной энергии и темной материи. Поскольку темные энергия и материя не испускают никакого излучения, устройства наблюдения могут только частично помочь в изучении, потому что они не могут непосредственно наблюдать темные составляющие Вселенной. Для изучения этих объектов ученые построили ряд новых детекторов. Изучение темной энергии и темной материи может быть возможно путем объединения этих новых детекторов в сочетании с телескопами.

Выводы

В выводах какие бывают телескопы можно отметить различные типы этого инструмента, обеспечивающие многочисленные способы изучения звезд, планет и объектов во Вселенной.

Бывают телескопы от недорогих домашних бренда Veber до сложнейших космического базирования.

Различные виды телескопов были разработаны для наблюдения звезд в различных длинах волн по всей Вселенной. Телескопы бывают различны по функциональному применению в астрономии, хотя некоторые объекты, как темная энергия и темная материя не могут быть непосредственно наблюдаемы. Новые технологии в будущем создадут лучшие устройства и инструменты для ученых, чтобы обнаружить неизвестные объекты в нашей Вселенной.

Таким образом, представлено резюме какие бывают телескопы для исследований и открытий во Вселенной для настоящих и будущих поколений.

Небо манит нас, когда мы смотрим на его просторы. Что же скрывается за облаками, и что находится в его непроглядной темноте? На эти вопросы, разумеется, отчасти мы смогли получить представления с помощью телескопа. Бесспорно, это уникальное устройство, которое подарило нам великолепную картину космоса. И несомненно, приблизило наше понимание небесного пространства.

Известно, что первый телескоп создал Галилео Галилей. Хотя немногие знают, что он использовал ранние открытия других учёных. Например, изобретение зрительной трубы для мореплавания.
Кроме того, мастера по стеклу уже создали очки. Вдобавок, использовались линзы. И эффект преломления и увеличения стекла был более или менее изучен.


Первый телескоп Галилея

Безусловно, Галилео добился значительного результата в исследовании данной области. К тому же, он собрал и усовершенствовал все наработки. И в итоге, разработал и представил первый в мире телескоп. По правде, он имел лишь трёхкратное увеличение. Но отличался высоким на тот момент качеством изображения.

Кстати, именно Галилей назвал свой разработанный объект телескопом.
В дальнейшем, учёный не остановился на достигнутом. Он усовершенствовал прибор до двадцати кратного увеличения картинки.
Важно, что Галилео не только разработал телескоп. Более того, он первым использовал его для исследования космоса. Кроме того, он сделал массу астрономических открытий.


Характеристика телескопов

Телескоп состоит из трубы, которая стоит на специальной монтировке. Её оснащают осями для нацеливания на наблюдаемый объект.
Кроме того, у оптического устройства имеется окуляр и объектив. Причём задняя плоскость объектива перпендикулярна оптической оси, и соединена с передней поверхностью окуляра. Которая, между прочим, аналогична объективной по отношению к оптической оси.


Стоит отметить, что для фокусировки используется особое устройство.
Основными характеристиками телескопов являются увеличение и разрешение.
Увеличение изображения зависит от фокусного расстояния окуляра и объекта.
С разрешением связано свойство преломления света. Таким образом, размер наблюдаемого объекта ограничен разрешением телескопа.

Виды телескопов в астрономии

Разновидности телескопов в связаны с различными способами построения. Если точнее, то применением различных инструментов в качестве объектива. Кроме того, имеет значение для какой цели нужно устройство.
На сегодняшний день существует несколько основных типов телескопов в астрономии. В зависимости от светособирающего компонента они бывают линзовые, зеркальные и комбинированные.

Линзовые телескопы (диоптрические)

По другому, их называют рефракторами. Это самые первые телескопы. В них свет собирается линзой, которая с двух сторон ограничена сферой. Поэтому она считается двояковыпуклой. К тому же, линза является объективом.
Что интересно, можно использовать не просто линзу, а целую систему из них.


Стоит заметить, что выпуклые линзы преломляют лучи света и собирают их в фокус. А в нём, в свою очередь, строится изображение. Для того, чтобы его рассмотреть применяют окуляр.
Что важно, линза устанавливается так, чтобы фокус и окуляр совпадали.
Кстати, Галилео изобрёл именно рефрактор. Но современные приборы состоят из двух линз. Одна из них собирает свет, а другая рассеивает. Что позволяет уменьшить отклонения и погрешности.

Зеркальные телескопы (катаптрические)

Также их называют рефлекторы. В отличие от линзового типа, объектив у них это вогнутое зеркало. Оно собирает свет звезды в одной точке и отражает его на окуляр. При этом погрешности минимальны, а разложение света на лучи отсутствует полностью. Но использование рефлектора ограничивает поле зрения наблюдателя.
Что интересно, зеркальные телескопы самые распространённые в мире. Потому как разработка их намного легче, чем, например, линзовых приборов.


Катадиоптрические телескопы (комбинированные)

Это зеркально-линзовые приборы. В них для получения изображения применяют и линзы, и зеркала.

В свою очередь, их разделили на два подвида:
1) телескопы Шмидт-Кассегрена-в них в самом центре кривизны зеркала установлена диафрагма. Тем самым происходит исключение сферических нарушений и отклонений. Но увеличивается поле зрения и качество изображения.
2) телескопы Максутова-Кассегрена-в районе фокальной плоскости установлена плоско-выпуклая линза. В результате предотвращается кривизна поля и сферическое отклонение.


Стоит отметить, что в современной астрономии чаще применяются именно комбинированный вид приборов. В результате смешения двух разных элементов для собирания света они позволяют получать более качественные данные.

Такие устройства способны принимать исключительно одну волну сигналов. С помощью антенн происходит передача сигналов и обработка их в изображения.
Радиотелескопы используются астрономами для научных исследований.


Инфракрасные модели телескопов

Они по своей конструкции очень схожи с оптическими зеркальными телескопами. Принцип получения изображения практически аналогичен. Лучи отражаются объективом и собираются в одной точке. Далее специальный прибор измеряет тепло и фотографирует полученный результат.


Современные телескопы

Телескоп это оптический прибор для наблюдений. Изобрели его почти полвека назад. На протяжении этого времени, учёные меняли и усовершенствовали устройство. Действительно, создано много новых моделей. В отличие от первых они имеют повышенное качество и увеличение изображения.

В нашем веке технологий используются компьютерные телескопы. Соответственно, они оснащены специальными программами. Что важно, современный прототип учитывает, что у каждого человека восприятие глаз разное. Для высокой точности картинку передают на монитор. Таким образом изображение воспринимается таким, какое оно на самом деле есть. Вдобавок, данный способ наблюдения исключает любые искажения.


Кроме того, учёные нашего поколения применяют одновременно не одно устройство, а несколько. Более того, к телескопу подключают уникальные камеры, которые передают информацию на компьютер. Это позволяет получать чёткие и точные сведения. Которые, разумеется, используют для изучения и .

Что интересно, сейчас телескопы не просто приборы для наблюдения. Но также устройства для измерения расстояний между космическими объектами. Для этой функции к ним подключают спектрографы. И взаимодействие этих приборов предоставляет конкретные данные.

Другая классификация

Есть еще и другие виды телескопов. Но используются они по своему отдельному назначению. Например, рентгеновские и гамма-телескопы. Или ультрафиолетовые устройства, которые фильтруют картинку без обработки и засвечивания.
Кроме того, можно разделить приборы на профессиональные и любительские. Первые используются учёными и астрономами. Очевидно, что вторые подходят для домашнего применения.


Как выбрать телескоп для любителей астрономии

Выбор телескопа для любителей астрономии основывается на том, что же вы хотите наблюдать. В принципе, выше описаны виды и характеристики приборов. Вам просто нужно выбрать какой больше нравится. Лучше, на мой взгляд остановиться на линзовом, либо комбинированном виде. Но выбирать, разумеется, вам.


По данным интернета, лучшие любительские телескопы представлены фирмами: Celestron, Bresser и Veber.

Телескопом сотни лет изучают жизнь планет

Создание и разработка телескопа, на самом деле, позволили сделать огромный шаг в исследовании космоса. Вероятно, всё, что мы знаем сформировалось с помощью этого прибора. Хотя, конечно, не стоит приуменьшать саму деятельность учёных.
Сегодня мы рассмотрели некоторые типы телескопов и их характеристики. Однозначно, виден прогресс технологий. И как результат, мы узнали множество интересного о космических объектах и самом космосе. Кроме того, мы можем любоваться прекрасным небом и знакомиться с ним благодаря этому чудесному изобретению.

Телескоп - это уникальный оптический прибор, предназначенный для наблюдения за небесными телами. Использование приборов позволяет рассмотреть самые разные объекты, не только те, которые располагаются недалеко от нас, но и те, которые находятся за тысячи световых лет от нашей планеты. Так что такое телескоп и кто его придумал?

Первый изобретатель

Телескопические устройства появились в семнадцатом веке. Однако по сей день ведутся дебаты, кто изобрел телескоп первым - Галилей или Липперсхей. Эти споры связаны с тем, что оба ученых примерно в одно время вели разработки оптических устройств.

В 1608 году Липперсхей разработал очки для знати, позволяющие видеть удаленные объекты вблизи. В это время велись военные переговоры. Армия быстро оценила пользу разработки и предложила Липперсхею не закреплять авторские права за устройством, а доработать его так, чтобы в него можно было бы смотреть двумя глазами. Ученый согласился.

Новую разработку ученого не удалось удержать втайне: сведения о ней были опубликованы в местных печатных изданиях. Журналисты того времени назвали прибор зрительной трубой. В ней использовалось две линзы, которые позволяли увеличить предметы и объекты. С 1609 года в Париже вовсю продавали трубы с трехкратным увеличением. С этого года какая-либо информация о Липперсхее исчезает из истории, а появляются сведения о другом ученом и его новых открытиях.

Примерно в те же годы итальянец Галилео занимался шлифовкой линз. В 1609 году он представил обществу новую разработку - телескоп с трехкратным увеличением. Телескоп Галилея имел более высокое качество изображения, чем трубы Липперсхея. Именно детище итальянского ученого получило название «телескоп».

В семнадцатом веке телескопы изготавливались голландскими учеными, но они имели низкое качество изображения. И только Галилею удалось разработать такую методику шлифовки линз, которая позволила увеличить четко объекты. Он смог получить двадцатикратное увеличение, что было в те времена настоящим прорывом в науке. Исходя из этого невозможно сказать, кто изобрел телескоп: если по официальной версии, то именно Галилео представил миру устройство, которое он назвал телескопом, а если смотреть по версии разработки оптического прибора для увеличения объектов, то первым был Липперсхей.

Первые наблюдения за небом

После появления первого телескопа были сделаны уникальные открытия. Галилео применил свою разработку для отслеживания небесных тел. Он первым увидел и зарисовал лунные кратеры, пятна на Солнце, а также рассмотрел звезды Млечного Пути, спутники Юпитера. Телескоп Галилея дал возможность увидеть кольца у Сатурна. К сведению, в мире до сих пор есть телескоп, работающий по тому же принципу, что и устройство Галилея. Он находится в Йоркской обсерватории. Аппарат имеет диаметр 102 сантиметра и исправно служит ученым для отслеживания небесных тел.

Современные телескопы

На протяжении столетий ученые постоянно изменяли устройства телескопов, разрабатывали новые модели, улучшали кратность увеличения. В результате удалось создать малые и большие телескопы, имеющие разное назначение.

Малые обычно применяют для домашних наблюдений за космическими объектами, а также для наблюдения за близкими космическими телами. Большие аппараты позволяют рассмотреть и сделать снимки небесных тел, расположенных в тысячах световых лет от Земли.

Виды телескопов

Существует несколько разновидностей телескопов:

  1. Зеркальные.
  2. Линзовые.
  3. Катадиоптрические.

К линзовым относят рефракторы Галилея. К зеркальным относят устройства рефлекторного типа. А что такое телескоп катадиоптрический? Это уникальная современная разработка, в которой сочетается линзовый и зеркальный прибор.

Линзовые телескопы

Телескопы в астрономии играют важную роль: они позволяют видеть кометы, планеты, звезды и другие космические объекты. Одними из первых разработок были линзовые аппараты.

В каждом телескопе есть линза. Это главная деталь любого устройства. Она преломляет лучи света и собирает их в точке, под названием фокус. Именно в ней строится изображение объекта. Чтобы рассмотреть картинку, используют окуляр.

Линза размещается таким образом, чтобы окуляр и фокус совпадали. В современных моделях для удобного наблюдения в телескоп применяют подвижные окуляры. Они помогают настроить резкость изображения.

Все телескопы обладают аберрацией - искажением рассматриваемого объекта. Линзовые телескопы имеют несколько искажений: хроматическую (искажаются красные и синие лучи) и сферическую аберрацию.

Зеркальные модели

Зеркальные телескопы называют рефлекторами. На них устанавливается сферическое зеркало, которое собирает световой пучок и отражает его с помощью зеркала на окуляр. Для зеркальных моделей не характерна хроматическая аберрация, так как свет не преломляется. Однако у зеркальных приборов выражена сферическая аберрация, которая ограничивает поле зрения телескопа.

В графических телескопах используются сложные конструкции, зеркала со сложными поверхностями, отличающиеся от сферических.

Несмотря на сложность конструкции, зеркальные модели легче разрабатывать, чем линзовые аналоги. Поэтому данный вид более распространен. Самый большой диаметр телескопа зеркального типа составляет более семнадцати метров. На территории России самый большой аппарат имеет диаметр шесть метров. На протяжении многих лет он считался самым большим в мире.

Характеристики телескопов

Многие покупают оптические аппараты для наблюдений за космическими телами. При выборе устройства важно знать не только то, что такое телескоп, но и то, какими характеристиками он обладает.

  1. Увеличение. Фокусное расстояние окуляра и объекта - это кратность увеличения телескопа. Если фокусное расстояние объектива два метра, а у окуляра - пять сантиметров, то такое устройство будет обладать сорокакратным увеличением. Если окуляр заменить, то увеличение будет другим.
  2. Разрешение. Как известно, свету свойственны преломление и дифракция. В идеале любое изображение звезды выглядит как диск с несколькими концентрическими кольцами, называемыми дифракционными. Размеры дисков ограничены только возможностями телескопа.

Телескопы без глаз

А что такое телескоп без глаза, для чего его используют? Как известно, у каждого человека глаза воспринимают изображение по-разному. Один глаз может видеть больше, а другой - меньше. Чтобы ученые смогли рассмотреть все, что им необходимо увидеть, применяют телескопы без глаз. Эти аппараты передают картинку на экраны мониторов, через которые каждый видит изображение именно таким, какое оно есть, без искажений. Для малых телескопов с этой целью разработаны камеры, подключаемые к аппаратам и снимающие небо.

Самыми современными методами видения космоса стало использование ПЗС камер. Это особые светочувствительные микросхемы, которые собирают информацию с телескопа и передают ее на ЭВМ. Получаемые с них данные настолько четкие, что невозможно представить, какими еще устройствами можно было бы получить такие сведения. Ведь глаз людей не может различать все оттенки с такой высокой четкостью, как это делают современные камеры.

Для измерения расстояний между звездами и другими объектами пользуются специальными приборами - спектрографами. Их подключают к телескопам.

Современный астрономический телескоп - это не одно устройство, а сразу несколько. Получаемые данные с нескольких аппаратов обрабатываются и выводятся на мониторы в виде изображений. Причем после обработки ученые получают изображения очень высокой четкости. Увидеть глазами в телескоп такие же четкие изображения космоса невозможно.

Радиотелескопы

Астрономы для своих научных разработок используют огромные радиотелескопы. Чаще всего они выглядят как огромные металлические чаши с параболической формой. Антенны собирают получаемый сигнал и обрабатывают получаемую информацию в изображения. Радиотелескопы могут принимать только одну волну сигналов.

Инфракрасные модели

Ярким примером инфракрасного телескопа является аппарат имени Хаббла, хотя он может быть одновременно и оптическим. Во многом конструкция инфракрасных телескопов схожа с конструкцией оптических зеркальных моделей. Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где находится прибор, измеряющий тепло. Полученные тепловые лучи пропускаются через тепловые фильтры. Только после этого происходит фотографирование.

Ультрафиолетовые телескопы

При фотографировании фотопленка может засвечиваться ультрафиолетовыми лучами. В некоторой части ультрафиолетового диапазона возможно принимать изображения без обработки и засвечивания. А в некоторых случаях необходимо, чтобы лучи света прошли через специальную конструкцию - фильтр. Их использование помогает выделить излучение определенных участков.

Существуют и другие виды телескопов, каждый из которых имеет свое назначение и особые характеристики. Это такие модели, как рентгеновские, гамма-телескопы. По своему назначению все существующие модели можно разделить на любительские и профессиональные. И это далеко не вся классификация аппаратов для отслеживания небесных тел.

> Виды телескопов

Все оптические телескопы группируются по виду светособирающего элемента на зеркальные, линзовые и комбинированные. Каждый тип телескопов имеет свои достоинства и недостатки, поэтому, выбирая оптику, нужно принимать во внимание следующие факторы: условия и цели наблюдения, требования к весу и мобильности, цене, уровню аберрации. Охарактеризуем наиболее популярные виды телескопов.

Рефракторы (линзовые телескопы)

Рефракторы – это первые телескопы, изобретенные человеком. В таком телескопе за сбор света отвечает двояковыпуклая линза, которая выступает в роли объектива. Ее действие строится на основном свойстве выпуклых линз – преломлении световых лучей и их сборе в фокусе. Отсюда и название - рефракторы (от латинского refract - преломлять).

Был создан в 1609 году. В нем были использованы две линзы, с помощью которых собиралось максимальное количество звездного света. Первая линза, которая выступала в роли объектива, была выпуклой и служила для сбора и фокусировки света на определенном расстоянии. Вторая линза, играющая роль окуляра, была вогнутой и использовалась для превращения сходящего светового пучка в параллельный. С помощью системы Галилея можно получить прямое, неперевернутое изображение, качество которого сильно страдает от хроматической аберрации. Эффект хроматической аберрации можно увидеть в виде ложного прокрашивания деталей и границ объекта.


Рефрактор Кеплера
– более совершенная система, которая была создана в 1611 году. Здесь в роли окуляра использовалась выпуклая линза, в которой передний фокус был совмещен с задним фокусом линзы-объектива. От этого итоговое изображение было перевернутым, что не принципиально для астрономических исследований. Главное преимущество новой системы – возможность установки измерительной сетки внутри трубы в точке фокуса.

Для данной схемы также была характерна хроматическая аберрация, впрочем эффект от нее можно было нивелировать, увеличив фокусное расстояние. Именно поэтому телескопы того времени имели огромное фокусное расстояние с трубой соответствующего размера, что вызывало серьезные трудности при проведении астрономических исследований.

В начале XVIII века появился , который популярен и в сегодняшние дни. Объектив данного прибора сделан из двух линз, изготовленных их различных сортов стекла. Одна линза – собирающая, вторая – рассеивающая. Такая структура позволяет серьезно уменьшить хроматическую и сферическую аберрации. А корпус телескопа остается весьма компактным. Сегодня созданы рефракторы апохроматы, в которых влияние хроматической аберрации сведено к возможному минимуму.

Достоинства рефракторов:

  • Простая конструкция, легкость в эксплуатации, надежность;
  • Быстрая термостабилизация;
  • Нетребовательность к профессиональному обслуживанию;
  • Идеален для исследования планет, Луны, двойных звезд;
  • Превосходная цветопередача в апохроматическом исполнении, хорошая – в ахроматическом;
  • Система без центрального экранирования от диагонального или вторичного зеркала. Отсюда высокая контрастность изображения;
  • Отсутствие воздушных потоков в трубе, защита оптики от грязи и пыли;
  • Цельная конструкция объектива, не требующая регулировок со стороны астронома.

Недостатки рефракторов:

  • Высокая цена;
  • Большой вес и габариты;
  • Небольшой практический диаметр апертуры;
  • Ограниченность в исследовании тусклых и небольших объектов в далеком космосе.

*При заказе телескопа напишите в комментарии "сайт" и получите скидку 3%

Название зеркальных телескопов – рефлекторов происходит от латинского слова reflectio – отражать. Данный прибор представляет собой телескоп с объективом, в роли которого выступает вогнутое зеркало. Его задача – собирать звездный свет в единой точке. Поместив в данной точке окуляр, можно увидеть изображение.

Один из первых рефлекторов (телескоп Грегори ) был придуман в 1663 году. Данный телескоп с параболическим зеркалом был полностью избавлен от хроматических и сферических аберраций. Свет, собранный зеркалом, отражался от небольшого овального зеркала, который был закреплен перед главным, в котором было небольшое отверстие для вывода светового пучка.

Ньютон был полностью разочарован в телескопах-рефракторах, поэтому одной из главных его разработок стал телескоп-рефлектор, созданный на основе металлического главного зеркала. Он одинаково отражал свет с различными длинами волн, а сферическая форма зеркала делала прибор более доступным даже для самостоятельного изготовления.

В 1672 году ученый-астроном Лорен Кассегрен предложил схему телескопа, который внешне напоминал знаменитый рефлектор Грегори. Но усовершенствованная модель имела несколько серьезных отличий, главное из которых – выпуклое гиперболическое вторичное зеркало, которое позволило сделать телескоп более компактным и свело к минимуму центральное экранирование. Впрочем, традиционный рефлектор Кассегрена оказался нетехнологичным для массового изготовления. Зеркала со сложными поверхностями и неисправленная аберрация комы – основные причины такой непопулярности. Однако модификации данного телескопа используются сегодня по всему миру. К примеру, телескоп Ричи-Кретьена и масса оптических приборов на основе системы Шмидта-Кассегрена и Максутова-Кассегрена .

Сегодня под названием «рефлектор» принято понимать ньютоновский телескоп. Основные его характеристики – это небольшая сферическая аберрация, отсутствие какого-либо хроматизма, а также неизопланатизм – проявление комы вблизи от оси, что связано с неравностью отдельных кольцевых зон апертуры. Из-за этого звезда в телескопе выглядит не как круг, а как некая проекция конуса. При этом, тупая округлая его часть повернута от центра в сторону, а острая – напротив, к центру. Для коррекции эффекта комы используются линзовые корректоры, которые следует фиксировать перед фотокамерой или окуляром.

«Ньютоны» зачастую выполняются на монтировке Добсона, которая отличается практичностью и компактными размерами. Это делает телескоп весьма портативным устройством, несмотря на размеры апертуры.

Достоинства рефлекторов:

    Доступная цена;

  • Мобильность и компактность;
  • Высокая эффективность при наблюдении тусклых объектов в глубоком космосе: туманностей, галактик, звездных скоплений;
  • Максимально яркие и четкие изображения с минимальным искажением.

    Хроматическая аберрация сведена к нулю.

Недостатки рефлекторов:

  • Растяжка вторичного зеркала, центральное экранирование. Отсюда – низкая контрастность изображения;
  • Термостабилизация большого стеклянного зеркала занимает много времени;
  • Открытая труба без защиты от тепла и пыли. Отсюда – низкое качество изображения;
  • Требуется регулярная коллимация и юстировка, которые могут утрачиваться во время использования или перевозки.

Для исправления аберрации и построения изображения катадиоптрические телескопы применяют как зеркала, так и линзы. Набольшим спросом сегодня пользуются два типа таких телескопов: на схеме Шмидт-Кассегрена и Максутов-Кассегрена.

Конструкция приборов Шмидта-Кассегрена (ШК) состоит из сферических главного и вторичного зеркал. При этом сферическая аберрация корректируется полноапертурной пластиной Шмидта, которая установлена на входе в трубу. Однако здесь сохраняются некоторые остаточные аберрации в виде комы и кривизны поля. Их исправление возможно при использовании линзовых корректоров, которые особенно актуальны в астрофотографии.

Основные достоинства приборов такого типа касаются минимального веса и короткой трубы при сохранении внушительного диаметра апертуры и фокусного расстояния. Вместе с тем, для данных моделей не характерны растяжки крепления вторичного зеркала, а особая конструкция трубы исключает проникновение внутрь воздуха и пыли.

Разработка системы Максутова-Кассегрена (МК) принадлежит советскому инженеру-оптику Д. Максутову. Конструкция такого телескопа оснащена сферическими зеркалами, а за коррекцию аберраций отвечает полноапертурный линзовый корректор, в роли которой выступает выпукло-вогнутая линза – мениск. Именно поэтому такое оптическое оборудование часто называют менисковым рефлектором.

К достоинствам МК относится возможность корректировки практически любой аберрации с помощью подбора основных параметров. Единственное исключение – это сферическая аберрация высшего порядка. Всё это делает схему популярной среди производителей и любителей астрономии.

Действительно, при прочих равных условиях система МК дает более качественные и четкие изображения, чем схема ШК. Однако у более габаритных телескопах МК продолжительнее период термостабилизации, поскольку толстый мениск теряет температуру гораздо медленнее. Кроме того, МК более чувствительны к жесткости крепления корректора, поэтому конструкция телескопа обладает большим весом. С этим связана высокая популярность систем МК с малыми и средними апертурами и систем ШК со средними и большими апертурами.

Кроме того, разработаны катадиоптрические системы Максутова-Ньютона и Шмидта-Ньютона, конструкция которых создана специально для исправления аберраций. Они сохранили ньютоновские габариты, но вес их существенно возрос. Особенно это касается менисковых корректоров.

Достоинства

  • Универсальность. Могут использоваться и для наземных, и для космических наблюдений;
  • Повышенный уровень исправления аберрации;
  • Защита от пыли и тепловых потоков;
  • Компактные размеры;
  • Доступная цена.

Недостатки катадиоптрических телескопов:

  • Долгий период термостабилизации, что особенно актуально для телескопов с менисковым корректором;
  • Сложность конструкции, которая вызывает трудности при установке и самостоятельной юстировке.