Метка: эндотелиальная дисфункция. Клиническое значение эндотелиальной дисфункции Дисфункция эндотелия фундаментальные и клинические аспекты

Catad_tema Артериальная гипертензия - статьи

Дисфункция эндотелия как новая концепция профилактики и лечения сердечно-сосудистых заболеваний

Конец XX века ознаменовался не только интенсивным развитием фундаментальных понятий патогенеза артериальной гипертонии (АГ), но и критическим пересмотром многих представлений о причинах, механизмах развития и лечении этого заболевания.

В настоящее время АГ рассматривается как сложнейший комплекс нейро-гуморальных, гемодинамических и метаболических факторов, взаимоотношение которых трансформируется во времени, что определяет не только возможность перехода одного варианта течения АГ в другой у одного и того же больного, но и заведомую упрощенность представлений о монотерапевтическом подходе, и даже о применении как минимум двух лекарственных препаратов с конкретным механизмом действия.

Так называемая "мозаичная" теория Пейджа, будучи отражением сложившегося традиционного концептуального подхода к изучению АГ, ставившего в основу АГ частные нарушения механизмов регуляции АД, может быть отчасти аргументацией против применения одного гипотензивного средства для лечения АГ. При этом, редко принимается во внимание такой немаловажный факт, что в своей стабильной фазе АГ протекает при нормальной или даже сниженной активности большинства систем, регулирующих АД .

В настоящее время серьезное внимание во взглядах на АГ стало уделяться метаболическим факторам, число которых, однако, увеличивается по мере накопления знаний и возможностей лабораторной диагностики (глюкоза, липопротеиды, С-реактивный белок, тканевой активатор плазминогена, инсулин, гомоцистеин и другие).

Возможности суточного мониторирования АД, пик внедрения которого в клиническую практику пришелся на 80-е годы, показали существенный патологический вклад нарушенной суточной вариабельности АД и особенностей суточных ритмов АД, в частности, выраженного предутреннего подъема, высоких суточных градиентов АД и отсутствия ночного снижения АД, что во многом связывалось с колебаниями сосудистого тонуса.

Тем не менее, к началу наступившего века отчетливо выкристаллизовалось направление, которое во многом включило в себя накопленный опыт фундаментальных разработок с одной стороны, и сосредоточило внимание клиницистов на новом объекте - эндотелии - как органе-мишени АГ, первым подвергающимся контакту с биологически активными веществами и наиболее рано повреждающимся при АГ.

С другой же стороны, эндотелий реализует многие звенья патогенеза АГ, непосредственно участвуя в повышении АД.

Роль эндотелия в сердечно-сосудистой патологии

В привычном человеческому сознанию виде эндотелий представляет собой орган весом 1,5-1,8 кг (сопоставимо с весом, например, печени) или непрерывный монослой эндотелиальных клеток длиной 7 км, или занимающий площадь футбольного поля, либо шести теннисных кортов. Без этих пространственных аналогий было бы трудно представить, что тонкая полупроницаемая мембрана, отделяющая кровоток от глубинных cтруктур сосуда, непрерывно вырабатывает огромное количество важнейших биологически активных веществ, являясь таким образом гигантским паракринным органом, распределенным по всей территории человеческого организма.

Барьерная роль эндотелия сосудов как активного органа определяет его главную роль в организме человека: поддержание гомеостаза путем регуляции равновесного состояния противоположных процессов - а) тонуса сосудов (вазодилатация/вазоконстрикция); б) анатомического строения сосудов (синтез/ингибирование факторов пролиферации); в) гемостаза (синтез и ингибирование факторов фибринолиза и агрегации тромбоцитов); г) местного воспаления (выработка про- и противовоспалительных факторов) .

Необходимо заметить, что каждая из четырех функций эндотелия, определяющая тромбогенность сосудистой стенки, воспалительные изменения, вазореактивность и стабильность атеросклеротической бляшки, напрямую или косвенно связана с развитием, прогрессированием атеросклероза, АГ и ее осложнений . Действительно недавние исследования показали, что надрывы бляшек, приводящих к инфаркту миокарда, отнюдь не всегда происходят в зоне максимального стенозирования коронарной артерии, напротив, зачастую случаются в местах небольших сужений - менее 50% по данным ангиографии .

Таким образом, изучение роли эндотелия в патогенезе сердечно-сосудистых заболеваний (ССЗ) привело к пониманию, что эндотелий регулирует не только периферический кровоток, но и другие важные функции. Именно поэтому объединяющей стала концепция об эндотелии как о мишени для профилактики и лечения патологических процессов, приводящих или реализующих ССЗ.

Понимание многоплановой роли эндотелия уже на качественно новом уровне вновь приводит к достаточно известной, но хорошо забытой формуле "здоровье человека определяется здоровьем его сосудов".

Фактически, к концу XX века, а именно в 1998 году, после получения Нобелевской Премии в области, медицины Ф. Мурадом, Робертом Фуршготом и Луисом Игнарро, была сформирована теоретическая основа для нового направления фундаментальных и клинических исследований в области АГ и других ССЗ - разработке участия эндотелия в патогенезе АГ и других ССЗ, а также способов эффективной коррекции его дисфункции.

Считается, что медикаментозное или немедикаментозное воздействие на ранних стадиях (предболезнь или ранние стадии болезни) способно отсрочить ее наступление или предотвратить прогрессирование и осложнения. Ведущая концепция превентивной кардиологии основана на оценке и коррекции так называемых факторов сердечно-сосудистого риска. Объединяющим началом для всех таких факторов является то, что рано или поздно, прямо или косвенно, все они вызывают повреждение сосудистой стенки, и прежде всего, в ее эндотелиальном слое.

Поэтому можно полагать, что одновременно они же являются факторами риска дисфункции эндотелия (ДЭ) как наиболее ранней фазы повреждения сосудистой стенки, атеросклероза и АГ, в частности.

ДЭ - это, прежде всего, дисбаланс между продукцией вазодилатирующих, ангиопротективных, антипролиферативных факторов с одной стороны (NO, простациклин, тканевой активатор плазминогена, С-тип натрийуретического пептида, эндотелиального гиперполяризующего фактора) и вазоконстриктивных, протромботических, пролиферативных факторов, с другой стороны (эндотелин, супероксид-анион, тромбоксан А2, ингибитор тканевого активатора плазминогена) . При этом, механизм их окончательной реализации неясен.

Очевидно одно - рано или поздно, факторы сердечно-сосудистого риска нарушают тонкий баланс между важнейшими функциями эндотелия, что в конечном итоге, реализуется в прогрессировании атеросклероза и сердечно-сосудистых инцидентах. Поэтому основой одного из нового клинического направлений стал тезис о необходимости коррекции дисфункции эндотелия (т.е. нормализации функции эндотелия) как показателе адекватности антигипертензивной терапии. Эволюция задач гипотензивной терапии конкретизировалась не только до необходимости нормализации уровня АД, но и нормализации функции эндотелия. Фактически это означает, что снижение АД без коррекции дисфункции эндотелия (ДЭ) не может считаться успешно решенной клинической задачей.

Данный вывод является принципиальным, еще и потому, что главные факторы риска атеросклероза, такие как, гиперхолестеринемия , АГ , сахарный диабет , курение , гипергомоцистеинемия сопровождаются нарушением эндотелий-зависимой вазодилатации - как в коронарном, так и в периферическом кровотоке. И хотя вклад каждого из этих факторов в развитие атеросклероза до конца не определен, это пока не меняет сложившихся представлений.

Среди изобилия биологически активных веществ, вырабатываемых эндотелием, важнейшим является оксид азота - NO. Открытие ключевой роли NO в сердечно-сосудистом гомеостазе было удостоено Нобелевской премии в 1998 году. Сегодня - это самая изучаемая молекула, вовлеченная в патогенез АГ и ССЗ в целом. Достаточно сказать, что нарушенное взаимоотношение ангиотензина-II и NO вполне способно определять развитие АГ .

Нормально функционирующий эндотелий отличает непрерывная базальная выработка NO с помощью эндотелиальной NO-синтетазы (eNOS) из L-аргинина. Это необходимо для поддержания нормального базального тонуса сосудов . В то же время, NO обладает ангиопротективными свойствами, подавляя пролиферацию гладкой мускулатуры сосудов и моноцитов , и предотвращая тем самым патологическую перестройку сосудистой стенки (ремоделирование), прогрессирование атеросклероза.

NO обладает антиоксидантным действием, ингибирует агрегацию и адгезию тромбоцитов, эндотелиально-лейкоцитарные взаимодействия и миграцию моноцитов . Таким образом, NO является универсальным ключевым ангиопротективным фактором.

При хронических ССЗ, как правило, наблюдается снижение синтеза NO. Причин тому достаточно много. Если суммировать все, то очевидно - снижение синтеза NO обычно связано с нарушением экспрессии или транскрипции eNOS , в том числе метаболического происхождения, снижением доступности запасов L-аргинина для эндотелиальной NOS , ускоренным метаболизмом NO (при повышенном образовании свободных радикалов ) или их комбинацией.

При всей многогранности эффектов NO Dzau et Gibbons удалось схематически сформулировать основные клинические последствия хронического дефицита NO в эндотелии сосудов , показав тем самым, на модели ишемичeской болезни сердца реальные следствия ДЭ и обратив внимание на исключительную важность ее коррекции на возможно ранних этапах.

Из схемы 1. следует важный вывод: NO играет ключевую ангиопротективную роль еще на ранних стадиях атеросклероза.

Схема 1. МЕХАНИЗМЫ ЭНДОТЕЛИАЛЬНОЙ ДИСФУНКЦИИ
ПРИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЯХ

Так, доказано, что NO уменьшает адгезию лейкоцитов к эндотелию , тормозит трансэндотелиальную миграцию моноцитов , поддерживает нормальную проницаемость эндотелия для липопротеидов и моноцитов , ингибирует окисление ЛПНП в субэндотелии . NO способен тормозить пролиферацию и миграцию гладко-мышечных клеток сосуда , а также синтез ими коллагена . Назначение ингибиторов NOS после сосудистой баллонной ангиопластики или в условиях гиперхолестеринемии приводило к гиперплазии интимы , и напротив, применение L-apгинина или доноров NO уменьшало выраженность индуцированной гиперплазии .

NO обладает антитромботическими свойствами, ингибируя адгeзию тромбоцитов , их активацию и агрегацию , активируя тканевой активатор плазминогена . Появляются убедительные основания полагать, что NO - важный фактор, модулирующий тромботический ответ на надрыв бляшки .

И безусловно, NO является мощным вазодилататором, модулирующим тонус сосудов, приводя к вазорелаксации опосредованно через повышение уровня цГМФ , поддерживая базальный тонус сосудов и осуществляя вазодилатацию в ответ на различные стимулы - напряжение сдвига крови , ацетилхолин , серотонин .

Нарушенная NO - зависимая вазодилатация и парадоксальная вазоконстрикция эпикардиальных сосудов приобретает особое клиническое значение для развития ишемии миокарда в условиях умственного и физического стресса, или холодовой нагрузки . А учитывая, что перфузия миокарда регулируется резистивными коронарными артериями , тонус которых зависит от вазодилататорной способности коронарного эндотелия , даже при отсутствии атеросклеротическнх бляшек, дефицит NO в коронарном эндотелии способен привести к миокардиальной ишемии .

Оценка функции эндотелия

Снижение синтеза NO является главным в развитии ДЭ. Поэтому, казалось бы, нет ничего более простого, чем измерение NO в качестве маркера функции эндотелия. Однако, нестабильность и короткий период жизни молекулы резко ограничивают применение этого подхода. Изучение же стабильных метаболитов NO в плазме или моче (нитратов и нитритов) не может рутинно применяться в клинике в связи с чрезвычайно высокими требованиями к подготовке больного к исследованию.

Кроме того, изучение одних метаболитов оксида азота вряд ли позволит получить ценную информацию о состоянии нитрат-продуцирующих систем. Поэтому, при невозможности одновременного изучения активности NO-синтетаз, наряду с тщательно контролируемым процессом подготовки пациента, наиболее реальным способом оценки состояния эндотелия in vivo является исследование эндотелий-зависимой вазодилатации плечевой артерии с помощью инфузии ацетилхолина или серотонина, либо с использованием венозно-окклюзионной плетизмографии, а также с помощью новейших методик - пробы с реактивной гиперемией и применением ультразвука высокого разрешения.

Кроме указанных методик, в качестве потенциальных маркеров ДЭ рассматривается несколько субстанций, продукция которых может отражать функцию эндотелия: тканевой активатор плазминогена и его ингибитор, тромбомодулин, фактор Виллебрандта .

Терапевтические стратегии

Оценка ДЭ как нарушения эндотелий-зависимой вазодилатации вследствие снижения синтеза NO, в свою очередь, требует пересмотра терапевтических стратегий воздействия на эндотелий с целью профилактики или уменьшения повреждений сосудистой стенки.

Уже показано, что улучшение функции эндотелия предшествует регрессу структурных атеросклеротических изменений . Влияние на вредные привычки - отказ от курения - приводит к улучшению функции эндотелия . Жирная еда способствует ухудшению функции эндотелия у практически здоровых лиц . Прием антиоксидантов (витамин Е, С) способствует коррекции функции эндотелия и тормозит утолщение интимы сонной артерии . Физические нагрузки улучшают состояние эндотелия даже при сердечной недостаточности .

Улучшение контроля гликемии у больных с сахарным диабетом само по себе уже является фактором коррекции ДЭ , а нормализация липидного профиля у пациентов с гиперхолестеринемией приводила к нормализации функции эндотелия , что значительно уменьшало частоту острых сердечно-сосудистых инцидентов .

При этом, такое "специфическое" воздействие, направленное на улучшение синтеза NO, у больных с ИБС или гиперхолестеринемией, как например, заместительная терапия L-аргинином - субстрата NOS - синтетазы, - также приводит к коррекции ДЭ . Аналогичные данные получены и при применении важнейшего кофактора NO-синтетазы - тетрагидробиоптерина - у больных с гиперхолестеринемией .

С целью снижения деградации NO применение витамина С в качестве антиоксиданта также улучшало функцию эндотелия у больных с гиперхолестеринемией , сахарным диабетом , курением , артериальной гипертонией , ИБС . Эти данные свидетельствуют о реальной возможности воздействовать на систему синтеза NO вне зависимости от причин, вызвавших его дефицит.

В настоящее время практически все группы лекарственных препаратов подвергаются проверке на предмет их активности в отношении системы синтеза NO. Косвенное влияние на ДЭ при ИБС , уже показано для ингибиторов АПФ, улучшающих функцию эндотелия опосредованно через косвенное увеличение синтеза и снижения деградации NO .

Позитивные результаты воздействия на эндотелий были получены также при клинических испытаниях антагонистов кальция , однако, механизм этого воздействия неясен.

Новым направлением развития фармацевтики, по-видимому, следует считать создание особого класса эффективных лекарственных препаратов, напрямую регулирующих синтез эндотелиальиого NO и тем самым, напрямую улучшающих функцию эндотелия.

В заключение, хотелось бы внопь подчеркнуть, что нарушения сосудистого тонуса и сердечно-сосудистое ремоделирование приводят к поражению органов - мишеней и осложнениям АГ. Становится очевидным, что биологически активные субстанции, регулирующие сосудистый тонус, одновременно модулируют и ряд важнейших клеточных процессов, таких как пролиферация и рост гладкой мускулатуры сосудов, рост мезангинальных структур, состояние экстрацеллюлярного матрикса , определяя тем самым скорость прогрессирования АГ и ее осложнений. Дисфункция эндотелия, как наиболее ранняя фаза повреждения сосуда, связана прежде всегo, с дефицитом синтеза NO - важнейшего фактора-регулятора сосудистого тонуса, но еще более важного фактора, от которого зависят структурные изменения сосудистой стенки .

Поэтому коррекция ДЭ при АГ и атеросклерозе должна быть рутинной и обязательной частью терапевтических и профилактических программ, а также жестким критерием оценки их эффективности.

Литература

1. Ю.В. Постнов. К истокам первичной гипертензии: подход с позиций биоэнергетики. Кардиология, 1998, N 12, С. 11-48.
2. Furchgott R.F., Zawadszki J.V. The obligatoryrole of endotnelial cells in the relazation of arterial smooth muscle by acetylcholine. Nature. 1980: 288: 373-376.
3. Vane J.R., Anggard E.E., Batting R.M. Regulatory functions of the vascular endotnelium. New England Journal of Medicine, 1990: 323: 27-36.
4. Hahn A.W., Resink T.J., Scott-Burden T. et al. Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: a novel autocrine function. Cell Regulation. 1990; 1: 649-659.
5. Lusher T.F., Barton M. Biology of the endothelium. Clin. Cardiol, 1997; 10 (suppl 11), II - 3-II-10.
6. Vaughan D.E., Rouleau J-L., Ridker P.M. et al. Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. Circulation, 1997; 96: 442-447.
7. Cooke J.P, Tsao P.S. Is NO an endogenous antiathero-genic molecule? Arterioscler. Thromb. 1994; 14: 653-655.
8. Davies M.J., Thomas А.С. Plaque fissuring - the cause of acute myocardial infarction, sudden ischemic death, and creshendo angina. Brit. Heart Journ., 1985: 53: 363-373.
9. Fuster V., Lewis A. Mechanisms leading to myocardial infarction: Insights from studies of vascular biology. Circulation, 1994: 90: 2126-2146.
10. Falk E., Shah PK, Faster V. Coronary plaque disruption. Circulation, 1995; 92: 657-671.
11. Ambrose JA, Tannenhaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease ana the development of myocardial infarction. J. Amer. Coll. Cardiol. 1988; 92: 657-671.
12. Hacket D., Davies G., Maseri A. Pre-existing coronary stenosis in patients with first myocardial infarction are not necessary severe. Europ. Heart J. 1988, 9: 1317-1323.
13. Little WC, Constantinescu M., Applegate RG et al. Can coronary angiography predict the site of subsequent myocardial infarction in patients with mils-to-moderatecoronary disease? Circulation 1988: 78: 1157-1166.
14. Giroud D., Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Amer. J. Cardiol. 1992; 69: 729-732.
15. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J. 1989; 3: 2007-2018.
16. Vane JR. Anggard ЕЕ, Batting RM. Regulatory functions of the vascular endothelium. New Engl. J. Med. 1990; 323: 27-36.
17. Vanhoutte PM, Mombouli JV. Vascular endothelium: vasoactive mediators. Prog. Cardiovase. Dis., 1996; 39: 229-238.
18. Stroes ES, Koomans НА, de Bmin TWA, Rabelink TJ. Vascular function in the forearm of hypercholesterolaemic patients off and on lipid-lowering medication. Lancet, 1995; 346: 467-471.
19. Chowienczyk PJ, Watts, GF, Cockroft JR, Ritter JM. Impaired endothelium - dependent vasodilation of forearm resistance vessels in hypercholesterolaemia. Lancet, 1992; 340: 1430-1432.
20. Casino PR, Kilcoyne CM, Quyyumi AA, Hoeg JM, Panza JA. The role ot nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients, Circulation, 1993, 88: 2541-2547.
21. Panza JA, Quyyumi AA, Brush JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. New Engl. J. Med. 1990; 323: 22-27.
22. Treasure CB, Manoukian SV, Klem JL. et al. Epicardial coronary artery response to acetylclioline are impared in hypertensive patients. Circ. Research 1992; 71: 776-781.
23. Johnstone MT, Creager SL, Scales KM et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation, 1993; 88: 2510-2516.
24. Ting HH, Timini FK, Boles KS el al. Vitamin С improves enoothelium-dependent vasodilatiiin in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1996: 97: 22-28.
25. Zeiher AM, Schachinger V., Minnenf. Long-term cigarette smoking impairs endotheliu in-dependent coronary arterial vasodilator function. Circulation, 1995: 92: 1094-1100.
26. Heitzer Т., Via Herttuala S., Luoma J. et al. Cigarette smoking potentiates endothelial dislunction of forearm resistance vessels in patients with hypercholes-terolemia. Role of oxidized LDL. Circulation. 1996, 93: 1346-1353.
27. Tawakol A., Ornland T, Gerhard M. et al. Hyperhomocysteinemia is associated with impaired enaothcliurn - dependent vasodilation function in humans. Circulation, 1997: 95: 1119-1121.
28. Vallence P., Coller J., Moncada S. Infects of endothelium-derived nitric oxide on peripheial arteriolar tone in man. Lancet. 1989; 2: 997-999.
29. Mayer В., Werner ER. In search of a function for tetrahydrobioptcrin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol. 1995: 351: 453-463.
30. Drexler H., Zeiher AM, Meinzer К, Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet, 1991; 338: 1546-1550.
31. Ohara Y, Peterson ТЕ, Harnson DG. Hypercholesterolemia increases eiidothelial superoxide anion production. J. Clin. Invest. 1993, 91: 2546-2551.
32. Harnson DG, Ohara Y. Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: Implications for impaired vasomotion. Amer. J. Cardiol. 1995, 75: 75B-81B.
33. Dzau VJ, Gibbons GH. Endothelium and growth factors in vascular remodelling of hypertension. Hypertension, 1991: 18 suppl. III: III-115-III-121.
34. Gibbons GH., Dzau VJ. The emerging concept of vascular remodelling. New Engl. J. Med., 1994, 330: 1431-1438.
35. Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium derived relaxing factor from pulmonary artery and vein possesses pharmaciilogical and chemical properties identical to those of nitric oxide radical. Circul. Research. 1987; 61: 866-879.
36. Palmer RMJ, Femge AG, Moncaila S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987, 327: 524-526.
37. Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholin in athero-sclerotic coronary arteries. New Engl. J. Med. 1986, 315: 1046-1051.
38. Esther CRJr, Marino EM, Howard ТЕ et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J. Clin. Invest. 1997: 99: 2375-2385.
39. Lasher TF. Angiotensin, ACE-inhibitors and endothelial control of vasomotor tone. Basic Research. Cardiol. 1993; 88(SI): 15-24.
40. Vaughan DE. Endothelial function, fibrinolysis, and angiotensyn-converting enzym inhibition. Clin. Cardiology. 1997; 20 (SII): II-34-II-37.
41. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expresiion of plasminogen activator inhibitor-1 in cultured endothelial cells. J. Clin. Invest. 1995; 95: 995-1001.
42. Ridker PM, Gaboury CL, Conlin PR et al. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Circulation. 1993; 87: 1969-1973.
43. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 1994; 74: 1141-1148.
44. Griendling KK, Alexander RW. Oxidative stress and cardiovascular discase. Circulation. 1997; 96: 3264-3265.
45. Hamson DG. Endothelial function and oxidant stress. Clin. Cardiol. 1997; 20 (SII): II-11-II-17.
46. Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA., 1991; 88: 4651-4655.
47. Lefer AM. Nitric oxide: Nature"s naturally occuring leukocyte inhibitor. Circulation, 1997; 95: 553-554.
48. Zeiker AM, Fisslthaler В, Schray Utz B, Basse R. Nitric oxide modulates the expression of monocyte chemoat-tractant protein I in cultured human endothelial cells. Circ. Res. 1995; 76: 980-986.
49. Tsao PS, Wang B, Buitrago R., Shyy JY, Cooke JP. Nitric oxide regulates monocyte chemotactic protein-1. Circulation. 1997; 97: 934-940.
50. Hogg N, Kalyanamman B, Joseph J. Inhibition of low-density lipoprotein oxidation by nitric oxide: potential role in atherogenesis. FEBS Lett, 1993; 334: 170-174.
51. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Amer. J. Physiol. 1992; 262: H611-H615.
52. Austin MA. Plasma triglyceride and coronary heart disease. Artcrioscler. Thromb. 1991; 11: 2-14.
53. Sarkar R., Meinberg EG, Stanley JС et al. Nitric oxide reversibility inhibits the migration of cultured vascular smooth muscle cells. Circ. Res. 1996: 78: 225-230.
54. Comwell TL, Arnold E, Boerth NJ, Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Amer. J. Physiol. 1994; 267: C1405-1413.
55. Kolpakov V, Gordon D, Kulik TJ. Nitric oxide-generating compounds inhibit total protein and collgen synthesis in cultured vascular smooth cells. Circul. Res. 1995; 76: 305-309.
56. McNamara DB, Bedi B, Aurora H et al. L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem. Biophys. Res. Commun. 1993; 1993: 291-296.
57. Cayatte AJ, Palacino JJ, Horten K, Cohen RA. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994; 14: 753-759.
58. Tarry WC, Makhoul RG. L-arginine improves endothelium-dependent vasorelaxation and reduces intimal hyperplasia after balloon angioplasty. Arterioscler. Thromb. 1994: 14: 938-943.
59. De Graaf JC, Banga JD, Moncada S et al. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation, 1992; 85: 2284-2290.
60. Azurna H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Brit. J. Pharmacol. 1986; 88: 411-415.
61. Stamler JS. Redox signaling: nitrosylation and related target interactions oi nitric oxide. Cell, 1994; 74: 931-938.
62. Shah PK. New insights inio the pathogenesis and prevention of acute coronary symptoms. Amer. J. Cardiol. 1997: 79: 17-23.
63. Rapoport RM, Draznin MB, Murad F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMO-depcndent protein phosphorviation Nature, 1983: 306: 174-176.
64. Joannides R, Haefeli WE, Linder L et al. Nitric oxide is responsible for flow-dependent dilation of human peripheral conduit arteries in vivo. Circulation, 1995: 91: 1314-1319.
65. Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholine in atlierosclerotic coronary arteries. New Engl. J. Mod. 1986, 315: 1046-1051.
66. Bruning ТА, van Zwiete PA, Blauw GJ, Chang PC. No functional involvement of 5-hydroxytryptainine la receptors in nitric oxide dependent dilation caused by serotonin in the human forearm vascular bed. J. Cardiovascular Pharmacol. 1994; 24: 454-461.
67. Meredith IT, Yeung AC, Weidinger FF et al. Role of impaired endotheliuin-dependent vasodilatioii in iscnemic manifestations ot coronary artery disease. Circulation, 1993, 87 (S.V): V56-V66.
68. Egashira K, Inou T, Hirooka Y, Yamada A. et al. Evidence of impaired endothclium-dependent coronary vasodilation in patients with angina pectoris and normal coronary angiograins. New Engl. J. Mod. 1993; 328: 1659-1664.
69. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Amer. J. Physiol. 1986; 251: 11779-11788.
70. Zeiher AM, Krause T, Schachinger V et al. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation. 1995, 91: 2345-2352.
71. Blann AD, Tarberner DA. A reliable marker of endothelial cell disfunction: does it exist? Brit. J. Haematol. 1995; 90: 244-248.
72. Benzuly KH, Padgett RC, Koul S et al. Functional improvement precedes structural regression of atherosclerosis. Circulation, 1994; 89: 1810-1818.
73. Davis SF, Yeung AC, Meridith IT et al. Early endothelial dysfunction predicts the development ottransplant coronary artery disease at I year posttransplant. Circulation 1996; 93: 457-462.
74. Celemajer DS, Sorensen KE, Georgakopoulos D et al. Cigarette smoking is associated witn dose-related and potentially reversible iinpairement of endothelium-dependent dilation in healthy young adults. Circulation, 1993; 88: 2140-2155.
75. Vogel RA, Coretti MC, Ploinic GD. Effect of single high-fat meal on endothelial hinction in healthy subject. Amer. J. Cardiol. 1997; 79: 350-354.
76. Azen SP, Qian D, Mack WJ et al. Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation, 1996: 94: 2369-2372.
77. Levine GV, Erei B, Koulouris SN et al. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery discase. Circulation 1996; 93: 1107-1113.
78. Homing B., Maier V, Drexler H. Physical training improves endothelial function in patients with chronic heart failure. Circulation, 1996; 93: 210-214.
79. Jensen-Urstad KJ, Reichard PG, Rosfors JS et al. Early atherosclerosis is retarded by improved long-term blood-glucose control in patients with IDDM. Diabetes, 1996; 45: 1253-1258.
80. Scandinavian Simvastatin Sunnval Study Investigators. Randomiseci trial cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Sinivastatin Survival Study (4S). Lancet, 1994; 344: 1383-1389.
81. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial disfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet, 1991; 338: 1546-1550.
82. Crcager MA, Gallagher SJ, Girerd XJ et al. L-arginine improves endothelium-dependent vasodilation in hypercholcsterolcrnic humans. J. Clin. Invest., 1992: 90: 1242-1253.
83. Tienfenhacher CP, Chilian WM, Mitchel M, DeFily DV. Restoration of endothclium-dependent vasodilation after reperliision injury by tetrahydrobiopterin. Circulation, 1996: 94: 1423-1429.
84. Ting HH, Timimi FK, Haley EA, Roddy MA et al. Vitamin С improves endothelium-dependent vasodilation in forearm vessels of humans with hypercholes-terolemia. Circulation, 1997: 95: 2617-2622.
85. Ting HH, Timimi FK, Boles KS et al. Vitamin С improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1996: 97: 22-28.
86. Heilzer T, Just H, Munzel T. Antioxidant vitamin С improves endothelial dysfunction in chronic smokers. Circulation, 1996: 94: 6-9.
87. Solzbach U., Hornig B, Jeserich M, Just H. Vitamin С improves endothelial ctysfubction of epicardial coronary arteries in hypertensive patients. Circulation, 1997: 96: 1513-1519.
88. Mancini GBJ, Henry GC, Macaya C. et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dystunction in patients with coronary artery disease, the TREND study. Circulation, 1996: 94: 258-265.
89. Rajagopalan S, Harrison DG. Reversing endothelial dysfunction with ACE-inhibitors. A new TREND? Circulation, 1996, 94: 240-243.
90. Willix AL, Nagel B, Churchill V el al. Antiatherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits. Arteriosclerosis 1985: 5: 250-255.
91. Berk ВС, Alexander RW. Biology of the vascular wall in hypertension. In: Renner RM, ed. The Kidney. Philadelphia: WB Saunders, 1996: 2049-2070.
92. Kagami S., Border WA, Miller DA, Nohle NA. Angiotensin II stimulates extracellular matrix protein syntliesis through induction ot transforming growth factor В in rat glomerular mesangial cells. J. Clin. Invest, 1994: 93: 2431-2437.
93. Frohlich ED, Tarazi RC. Is arterial pressure the sole factor responsible for hypertensive cardiac hypertropliy ? Amer. J. Cardiol. 1979: 44: 959-963.
94. Frohlich ED. Overview of hemoilynamic factors associated with left ventricular hypertrophy. J. Mol. Cell. Cardiol., 1989: 21: 3-10.
95. Cockcroft JR, Chowienczyk PJ, Urett SE, Chen CP et al. Nebivolol vasodilated human forearm vasculature, evidence for an L-arginine/NO-dependent mccahanism. J. Pharmacol. Exper. Ther. 1995, Sep; 274(3): 1067-1071.
96. Brehm BR, Bertsch D, von Falhis J, Wolf SC. Beta-blockers of the third generation inhibit endothelium-I liberation mRNA production and proliferation of human coronary smooth muscle and endothelial cells. J. Cardiovasc. Pharmacol. 2000, Nov: 36 (5 Suppl.): S401-403.

Патология сердечно-сосудистой системы продолжает занимать основное место в структуре заболеваемости, смертности и первичной инвалидизации, являясь причиной уменьшения общей продолжительности и ухудшения качества жизни пациентов как во всем мире, так и в нашей стране. Анализ показателей состояния здоровья населения Украины свидетельствует, что заболеваемость и смертность от болезней кровообращения остаются высокими и составляют 61,3% от общего показателя смертности. Поэтому разработка и внедрение мероприятий, направленных на улучшение профилактики и лечения сердечно-сосудистых заболеваний (ССЗ), являются актуальной проблемой кардиологии.

Согласно современным представлениям, в патогенезе возникновения и прогрессирования многих ССЗ — ишемической болезни сердца (ИБС), артериальной гипертензии (АГ), хронической сердечной недостаточности (ХСН) и легочной гипертензии (ЛГ) — одну из основных ролей играет эндотелиальная дисфункция (ЭД).

Роль эндотелия в норме

Как известно, эндотелий представляет собой тонкую полупроницаемую мембрану, отделяющую кровоток от более глубоких структур сосуда, которая непрерывно вырабатывает огромное количество биологически активных веществ, в связи с чем является гигантским паракринным органом.

Главная роль эндотелия состоит в поддержании гомеостаза путем регуляции противоположных процессов, происходящих в организме:

  1. тонуса сосудов (баланса вазоконстрикции и вазодилатации);
  2. анатомического строения сосудов (потенцирование и ингибирование факторов пролиферации);
  3. гемостаза (потенцирование и ингибирование факторов фибринолиза и агрегации тромбоцитов);
  4. местного воспаления (выработка про- и противовоспалительных факторов).

Основные функции эндотелия и механизмы, с помощью которых он осуществляет эти функции

Эндотелий сосудов выполняет ряд функций (таблица), важнейшей из которых является регуляция сосудистого тонуса. Еще R.F. Furchgott и J.V. Zawadzki доказали, что расслабление сосудов после введения ацетилхолина происходит вследствие высвобождения эндотелием эндотелиального фактора релаксации (ЭФР), и активность этого процесса зависит от целости эндотелия. Новым достижением в изучении эндотелия было определение химической природы ЭФР — азота оксида (NO).

Основные функции эндотелия сосудов

Функции эндотелия

Основные обеспечивающие механизмы

Атромбогенность сосудистой стенки

NO, t-РА, тромбомодулин и другие факторы

Тромбогенность сосудистой стенки

Фактор Виллебранда, РАI-1, РАI-2 и другие факторы

Регуляция адгезии лейкоцитов

Р-селектин, Е-селектин, IСАМ-1, VСАМ-1 и другие молекулы адгезии

Регуляция тонуса сосудов

Эндотелии (ЭТ), NO, РGI-2 и другие факторы

Регуляция роста сосудов

VEGF, FGFb и другие факторы

Азота оксид как эндотелиальный фактор релаксации

NO — это сигнальная молекула, которая является неорганическим веществом со свойствами радикала. Малые размеры, отсутствие заряда, хорошая растворимость в воде и липидах обеспечивают ей высокую проницаемость сквозь клеточные мембраны и субклеточные структуры. Время существования NO составляет около 6 с, после чего при участии кислорода и воды он превращается в нитрат (NO 2) и нитрит (NO 3) .

NO образуется из аминокислоты L-аргинина под влиянием ферментов NO-синтаз (NOS). В настоящее время выделены три изоформы NOS: нейрональная, индуцибельная и эндотелиальная.

Нейрональная NOS экспрессируется в нервной ткани, скелетных мышцах, кардиомиоцитах, эпителии бронхов и трахеи. Это конституциональный фермент, модулируемый внутриклеточным уровнем ионов кальция и принимающий участие в механизмах памяти, координации между нервной активностью и сосудистым тонусом, реализации болевого раздражения.

Индуцибельная NOS локализована в эндотелиоцитах, кардиомиоцитах, гладкомышечных клетках, гепатоцитах, но основной ее источник — макрофаги. Она не зависит от внутриклеточной концентрации ионов кальция, активируется под влиянием различных физиологических и патологических факторов (провоспалительные цитокины, эндотоксины) в случаях, когда в этом есть необходимость.

Эндотелиальная NOS — конституциональный фермент, регулируемый содержанием кальция. При активации этого фермента в эндотелии происходит синтез физиологического уровня NO, приводящего к релаксации гладкомышечных клеток. NO, образующийся из L-аргинина, при участии фермента NOS активирует в гладкомышечных клетках гуанилатцикпазу, стимулирующую синтез циклического гуанозинмонофосфата (ц-ГМФ), который является основным внутриклеточным мессенджером в сердечно-сосудистой системе и снижает содержание кальция в тромбоцитах и гладких мышцах. Поэтому конечными эффектами NO являются дилатация сосудов, торможение активности тромбоцитов и макрофагов. Вазопротекторные функции NO заключаются в модуляции высвобождения вазоактивных модуляторов, блокировании окисления липопротеинов низкой плотности, подавлении адгезии моноцитов и тромбоцитов к сосудистой стенке.

Таким образом, роль NO не ограничивается только регуляцией сосудистого тонуса. Он проявляет ангиопротекторные свойства, регулирует пролиферацию и апоптоз, оксидантные процессы, блокирует агрегацию тромбоцитов и оказывает фибринолитический эффект. NO ответственен также за противовоспалительные эффекты.

Итак, NO оказывает разнонаправленные эффекты:

  1. прямое отрицательное инотропное действие;
  2. вазодилататорное действие:

- антисклеротическое (тормозит клеточную пролиферацию);
- антитромботическое (препятствует адгезии циркулирующих тромбоцитов и лейкоцитов к эндотелию).

Эффекты NO зависят от его концентрации, места продукции, степени диффузии через сосудистую стенку, способности взаимодействовать с кислородными радикалами и уровня инактивации.

Существуют два уровня секреции NO:

  1. Базальная секреция — в физиологических условиях поддерживает тонус сосудов в покое и обеспечивает неадгезивность эндотелия по отношению к форменным элементам крови.
  2. Стимулированная секреция — усиление синтеза NO при динамическом напряжении мышечных элементов сосуда, сниженном содержании кислорода в ткани в ответ на выброс в кровь ацетилхолина, гистамина, брадикинина, норадреналина, АТФ и др., что обеспечивает вазодилатацию в ответ на приток крови.

Нарушение биодоступности NO происходит вследствие следующих механизмов:

Снижения его синтеза (дефицит субстрата NO — L-аргинина);
- уменьшения на поверхности эндотелиальных клеток количества рецепторов, раздражение которых в норме приводит к образованию NO;
- усиления деградации (разрушение NO наступает прежде, чем вещество достигает места своего действия);
- повышения синтеза ЭТ-1 и других вазоконстрикторных субстанций.

Кроме NO, к вазодилатирующим агентам, образующимся в эндотелии, относятся простациклин, эндотелиальный фактор гиперполяризации, натрийуретический пептид С-типа и др., играющие важную роль в регуляции сосудистого тонуса при снижении уровня NO.

К основным эндотелиальным вазоконстрикторам относятся ЭТ-1, серотонин, простагландин Н 2 (ПГН 2) и тромбоксан А 2 . Самый известный и изученный из них— ЭТ-1 — оказывает непосредственное констрикторное влияние на стенку как артерий, так и вен. К другим вазоконстрикторам относятся ангиотензин II и простагландин F 2a , непосредственно действующие на гладкомышечные клетки.

Дисфункция эндотелия

В настоящее время под ЭД понимают дисбаланс между медиаторами, обеспечивающими в норме оптимальное течение всех эндотелийзависимых процессов.

Развитие ЭД одни исследователи связывают с недостатком продукции или биодоступности NO в стенке артерий, другие — с дисбалансом продукции вазодилатирующих, ангиопротекторных и ангиопролиферативных факторов, с одной стороны, и вазоконстрикторных, протромботических и пролиферативных факторов — с другой. Основную роль в развитии ЭД играют оксидантный стресс, продукция мощных вазоконстрикторов, а также цитокинов и фактора некроза опухоли, которые подавляют продукцию NO. При длительном воздействии повреждающих факторов (гемодинамическая перегрузка, гипоксия, интоксикация, воспаление) функция эндотелия истощается и извращается, в результате чего в ответ на обычные стимулы возникают вазоконстрикция, пролиферация и тромбообразование.

Кроме указанных факторов, ЭД вызывают:

Гиперхолестеролемия, гиперлипидемия;
- АГ;
- спазм сосудов;
- гипергликемия и сахарный диабет;
- курение;
- гипокинезия;
- частые стрессовые ситуации;
- ишемия;
- избыточная масса тела;
- мужской пол;
- пожилой возраст.

Следовательно, основными причинами повреждения эндотелия являются факторы риска атеросклероза, которые реализуют свое повреждающее действие через усиление процессов оксидантного стресса. ЭД является начальным этапом в патогенезе атеросклероза. In vitro установлено снижение продукции NO в клетках эндотелия при гиперхолестеролемии, что обусловливает свободнорадикальное повреждение клеточных мембран. Окисленные липопротеины низкой плотности усиливают экспрессию молекул адгезии на поверхности эндотелиальных клеток, приводя к моноцитарной инфильтрации субэндотелия.

При ЭД нарушается баланс между гуморальными факторами, оказывающими защитное действие (NO, ПГН), и факторами, повреждающими стенку сосуда (ЭТ-1, тромбоксан А 2 , супероксиданион). Одними из наиболее существенных звеньев, повреждающихся в эндотелии при атеросклерозе, являются нарушение в системе NO и угнетение NOS под влиянием повышенного уровня холестерола и липопротеинов низкой плотности. Развившаяся при этом ЭД обусловливает вазоконстрикцию, повышенный клеточный рост, пролиферацию гладкомышечных клеток, накопление в них липидов, адгезию тромбоцитов крови, тромбообразование в сосудах и агрегацию. ЭТ-1 играет важную роль в процессе дестабилизации атеросклеротической бляшки, что подтверждается результатами обследования больных с нестабильной стенокардией и острым инфарктом миокарда (ИМ). В исследовании отмечено наиболее тяжелое течение острого ИМ при снижении уровня NO (на основании определения конечных продуктов метаболизма NO — нитритов и нитратов) с частым развитием острой левожелудочковой недостаточности, нарушениями ритма и ормированием хронической аневризмы левого желудочка сердца.

В настоящее время ЭД рассматривают в качестве основного механизма формирования АГ. При АГ одним из главных факторов развития ЭД является гемодинамический, который ухудшает эндотелийзависимое расслабление вследствие уменьшения синтеза NO при сохраненной или увеличенной продукции вазоконстрикторов (ЭТ-1, ангиотензина II), ускоренной его деградации и изменении цитоархитектоники сосудов. Так, уровень ЭТ-1 в плазме крови у больных с АГ уже на начальных стадиях заболевания достоверно превышает таковой у здоровых лиц. Наибольшее значение в уменьшении выраженности эндотелийзависимой вазодилатации (ЭЗВД) придают внутриклеточному оксидантному стрессу, так как свободнорадикальное окисление резко снижает продукцию NO эндотелиоцитами. С ЭД, препятствующей нормальной регуляции мозгового кровообращения, у больных с АГ также связывают высокий риск цереброваскулярных осложнений, следствием чего являются энцефалопатия, транзиторные ишемические атаки и ишемический инсульт.

Среди известных механизмов участия ЭД в патогенезе ХСН выделяют следующие:

1) повышение активности эндотелиального АТФ, сопровождающегося увеличением синтеза ангиотензина II;
2) подавление экспрессии эндотелиальной NOS и снижение синтеза NO, обусловленные:

Хроническим снижением кровотока;
- повышением уровня провоспалительных цитокинов и фактора некроза опухоли, подавляющих синтез NO;
- повышением концентрации свободных R(-), инактивирующих ЭФР-NO;
- повышением уровня циклооксигеназозависимых эндотелиальных факторов констрикции, препятствующих дилатирующему влиянию ЭФР-NO;
- снижением чувствительности и регулирующего влияния мускариновых рецепторов;

3) повышение уровня ЭТ-1, оказывающего вазоконстрикторное и пролиферативное действие.

NO контролирует такие легочные функции, как активность макрофагов, бронхоконстрикция и дилатация легочных артерий. У пациентов с ЛГ снижается уровень NO в легких, одной из причин которого является нарушение метаболизма L-аргинина. Так, у больных с идиопатической ЛГ отмечают снижение уровня L-аргинина наряду с повышением активности аргиназы. Нарушенный метаболизм асимметричного диметиларгинина (АДМА) в легких может инициировать, стимулировать или поддерживать течение хронических заболеваний легких, в том числе артериальной ЛГ. Повышенный уровень АДМА отмечают у пациентов с идиопатической ЛГ, хронической тромбоэмболической ЛГ и ЛГ при системном склерозе. В настоящее время активно изучают роль NO также в патогенезе легочных гипертензивных кризов. Усиленный синтез NO является адаптивной реакцией, противодействующей чрезмерному повышению давления в легочной артерии в момент острой вазоконстрикции.

В 1998 г. были сформированы теоретические основы для нового направления фундаментальных и клинических исследований по изучению ЭД в патогенезе АГ и других ССЗ и способах эффективной ее коррекции.

Принципы лечения дисфункции эндотелия

Поскольку патологические изменения функции эндотелия являются независимым предиктором неблагоприятного прогноза большинства ССЗ, эндотелий представляется идеальной мишенью для терапии. Цель терапии при ЭД — устранение парадоксальной вазоконстрикции и с помощью повышенной доступности NO в стенке сосудов создание защитной среды в отношении факторов, приводящих к ССЗ. Основной задачей является улучшение доступности эндогенного NO благодаря стимуляции NOS или ингибированию распада.

Немедикаментозные методы лечения

В экспериментальных исследованиях установлено, что потребление продуктов с высоким содержанием липидов приводит к развитию АГ за счет повышенного образования свободных радикалов кислорода, инактивирующих NO, что диктует необходимость ограничения жиров. Большое потребление соли подавляет действие NO в периферических резистивных сосудах. Физические упражнения повышают уровень NO у здоровых лиц и у пациентов с ССЗ, поэтому известные рекомендации в отношении уменьшения потребления соли и данные о пользе физических нагрузок при АГ и ИБС находят свое еще одно теоретическое обоснование. Считается, что положительный эффект на ЭД может оказывать применение антиоксидантов (витамины С и Е). Назначение витамина С в дозе 2 г пациентам с ИБС способствовало значительному кратковременному уменьшению выраженности ЭЗВД, что объяснялось захватом радикалов кислорода витамином С и, таким образом, повышением доступности NO.

Медикаментозная терапия

  1. Нитраты . Для терапевтического воздействия на коронарный тонус давно применяют нитраты, способные независимо от функционального состояния эндотелия отдавать NO стенке сосудов. Однако несмотря на эффективность в отношении расширения сосудов и уменьшение выраженности миокардиальной ишемии, применение препаратов этой группы не приводит к длительному улучшению эндотелиальной регуляции коронарных сосудов (ритмичность изменений тонуса сосудов, которая управляется с помощью эндогенного NO, не поддается стимуляции экзогенно введенному NO).
  2. Ингибиторы ангиотензинпревращающего фермента (АПФ) и ингибиторы рецепторов ангиотензина II. Роль ренин-ангиотензин-альдостероновой системы (РАС) в отношении ЭД главным образом связана с вазоконстрикторной эффективностью ангиотензина II. Основной локализацией АПФ являются мембраны эндотелиальных клеток сосудистой стенки, в которых находится 90% всего объема АПФ. Именно кровеносные сосуды — основное место превращения неактивного ангиотензина I в ангиотензин II. Основными блокаторами РАС являются ингибиторы АПФ. Кроме того, препараты этой группы проявляют дополнительные вазодилатирующие свойства вследствие их способности блокировать деградацию брадикинина и повышать его уровень в крови, что способствует экспрессии генов эндотелиальной NOS, повышению синтеза NO и уменьшению его разрушения.
  3. Диуретики . Существуют данные, доказывающие, что индапамид обладает эффектами, позволяющими, помимо диуретического действия, оказывать прямое вазодилатирующее влияние за счет антиоксидантных свойств, повышения биодоступности NO и уменьшения его разрушения.
  4. Антагонисты кальция. Блокирование кальциевых каналов уменьшает прессорный эффект важнейшего вазоконстриктора ЭТ-1, не влияя прямо на NO. Кроме того, препараты этой группы снижают концентрацию внутриклеточного кальция, что стимулирует секрецию NO и обусловливает вазодилатацию. Одновременно уменьшаются агрегация тромбоцитов и экспрессия молекул адгезии, а также подавляется активация макрофагов.
  5. Статины . Поскольку ЭД является фактором, приводящим к развитию атеросклероза, при заболеваниях, ассоциированных с ним, существует необходимость коррекции нарушенных функций эндотелия. Эффекты статинов связаны со снижением уровня холестерола, угнетением его локального синтеза, торможением пролиферации гладкомышечных клеток, активацией синтеза NO, что способствует стабилизации и предотвращению дестабилизации атеросклеротической бляшки, а также снижению вероятности возникновения спастических реакций. Это подтверждено в многочисленных клинических исследованиях.
  6. L -аргинин. Аргинин — условно незаменимая аминокислота. Среднесуточная потребность в L-аргинине составляет 5,4 г. Он является необходимым предшественником для синтеза белков и таких биологически важных молекул, как орнитин, пролин, полиамины, креатин и агматин. Однако главная роль аргинина в организме человека состоит в том, что он является субстратом для синтеза NO. Поступивший с пищей L-аргинин всасывается в тонком кишечнике и поступает в печень, где основное его количество утилизируется в орнитиновом цикле. Остающаяся часть L-аргинина используется ка к субстрат для продукции NO.

Эндотелийзависимые механизмы L -аргинина:

Участие в синтезе NO;
- уменьшение адгезии лейкоцитов к эндотелию;
- уменьшение агрегации тромбоцитов;
- снижение уровня ЭТ в крови;
- повышение эластичности артерий;
- восстановление ЭЗВД.

Следует отметить, что система синтеза и высвобождения NO эндотелием обладает значительными резервными возможностями, однако потребность в постоянном стимулировании его синтеза приводит к истощению субстрата NO — L-аргинина, восполнить который призван новый класс эндотелиопротекторов — донаторов NO. До недавнего времени отдельного класса эндотелиопротекторных препаратов не существовало, в качестве средств, способных корригировать ЭД, рассматривали лекарственные препараты других классов, обладающих подобными плейотропными эффектами.

Клинические эффекты L-аргинина как донатора N O . Имеющиеся данные указывают на то, что эффект L-apгининa зависит от его концентрации в плазме крови. При приеме L-apгининa внутрь его эффект связан с улучшением ЭЗВД. L-apгинин снижает агрегацию тромбоцитов и уменьшает адгезию моноцитов. При повышении концентрации L-apгининa в крови, которое достигают путем в/в его введения, проявляются эффекты, не связанные с продукцией NO, а высокий уровень L-apгининa в плазме крови приводит к неспецифической дилатации.

Влияние на гиперхолестеролемию. В настоящее время существуют данные доказательной медицины об улучшении эндотелиальной функции у больных с гиперхолестеролемией после приема L-apгининa, подтвержденные в двойном слепом плацебо-контролируемом исследовании.

Под влиянием перорального приема L-aprининa у больных со стенокардией повышается толерантность к физической нагрузке по данным пробы с 6-минутной ходьбой и при велоэргометрической нагрузке. Аналогичные данные получены при кратковременном применении L-apгининa у пациентов с хронической ИБС. После инфузии 150 мкмоль/л L-aprининa у пациентов с ИБС отмечено увеличение диаметра просвета сосуда в стенозированном сегменте на 3-24%. Применение раствора аргинина для перорального приема у больных со стабильной стенокардией II-III функционального класса (по 15 мл 2 раза в сутки в течение 2 мес) дополнительно к традиционной терапии способствовало достоверному увеличению выраженности ЭЗВД, повышению толерантности к физической нагрузке и улучшению качества жизни. У больных с АГ доказан положительный эффект при добавлении к стандартной терапии L-apгининa в дозе 6 г/сут. Прием препарата в дозе 12 г/ сут способствует снижению уровня диастолического артериального давления. В рандомизированном двойном слепом плацебо-контролируемом исследовании доказано позитивное влияние L-apгининa на гемодинамику и способность к выполнению физической нагрузки у пациентов с артериальной ЛГ, принимавших препарат перорально (по 5 г на 10 кг массы тела 3 раза в сутки). Установлено значительное повышение концентрации L-цитpyллинa в плазме крови таких больных, указывающее на усиление продукции NO, а также снижение на 9% среднего легочного артериального давления. При ХСН прием L-apгининa в дозе 8 г/сут на протяжении 4 нед способствовал повышению толерантности к физической нагрузке и улучшению ацетилхолинзависимой вазодилатации лучевой артерии.

В 2009 г. V. Bai еt аl. представили результаты метаанализа 13 рандомизированных исследований, выполненных в целях изучения эффекта перорального приема L-apгининa на функциональное состояние эндотелия. В этих исследованиях изучали эффект L-apгининa в дозе 3-24 г/сут при гиперхолестеролемии, стабильной стенокардии, заболеваниях периферических артерий и ХСН (длительность лечения — от 3 дней до 6 мес). Метанализ показал, что пероральный прием L-apгининa даже короткими курсами существенно увеличивает выраженность ЭЗВД плечевой артерии по сравнению с показателем при приеме плацебо, что свидетельствует об улучшении функции эндотелия.

Таким образом, результаты многочисленных исследований, проведенных на протяжении последних лет, свидетельствуют о возможности эффективного и безопасного применения L-аргинина как активного донатора NO с целью устранения ЭД в при ССЗ.

Коноплева Л.Ф.

Хроническая ишемия мозга (ХИМ) — заболевание с прогрессирующим многоочаговым диффузным поражением головного мозга, проявляющееся неврологическими нарушениями различной степени, обусловленными редукцией мозгового кровотока, транзиторными ишемическими атаками или перенесенными инфарктами мозга . Число пациентов с явлениями хронической ишемии мозга в нашей стране неуклонно растет, составляя не менее 700 на 100 000 населения .

В зависимости от степени выраженности клинических нарушений выделяют три стадии заболевания. Каждая из стадий в свою очередь может быть компенсированной, субкомпенсированной и декомпенсированной. В I стадии наблюдаются головные боли, ощущение тяжести в голове, головокружения, нарушения сна, снижение памяти и внимания, в неврологическом статусе — рассеянная мелко-очаговая неврологическая симптоматика, недостаточная для диагностики очерченного неврологического синдрома. Во II стадии жалобы аналогичные, но более интенсивные — прогрессивно ухудшается память, присоединяется шаткость при ходьбе, возникают затруднения в профессиональной деятельности; появляется отчетливая симптоматика органических, неврологических поражений головного мозга. III стадия характеризуется уменьшением количества предъявляемых жалоб, что связано с прогрессированием когнитивных нарушений и снижением критики к своему состоянию. В неврологическом статусе наблюдается сочетание нескольких неврологических синдромов, что свидетельствует о многоочаговом поражении головного мозга .

Роль эндотелиальной дисфункции в патогенезе атеросклероза и артериальной гипертензии

Основными факторами, приводящими к развитию хронической ишемии мозга, являются атеросклеротическое поражение сосудов и артериальная гипертензия (АГ).

Факторы риска развития сердечно-сосудистых заболеваний, такие как гиперхолестеринемия, артериальная гипертензия, сахарный диабет, курение, гипергомоцистеинемия, ожирение, гиподинамия, сопровождаются нарушением эндотелийзависимой вазодилатации .

Эндотелий — однослойный пласт плоских клеток мезенхимного происхождения, выстилающий внутреннюю поверхность кровеносных и лимфатических сосудов, сердечных полостей. К настоящему времени накоплены многочисленные экспериментальные данные, позволяющие говорить о роли эндотелия в поддержании гомеостаза путем сохранения динамического равновесия ряда разнонаправленных процессов :

  • тонуса сосудов (регуляция процессов вазодилатация/вазоконстрикция через высвобождение сосудорасширяющих и сосудосуживающих факторов, модулирование сократительной активности гладкомышечных клеток);
  • процессов гемостаза (синтез и ингибирование факторов агрегации тромбоцитов, про- и антикоагулянтов, факторов фибринолиза);
  • местного воспаления (выработка про- и противовоспалительных факторов, регуляции сосудистой проницаемости, процессов адгезии лейкоцитов);
  • анатомического строения и ремоделирования сосудов (синтез/ингибирование факторов пролиферации, рост гладкомышечных клеток, ангио-генез).

Также эндотелий выполняет транспортную (осуществляет двусторонний транспорт веществ между кровью и другими тканями) и рецепторную функцию (эндотелиоциты обладают рецепторами различных цитокинов и адгезивных белков, экспрессируют на плазмолемме ряд соединений, обеспечивающих адгезию и трансэндотелиальную миграцию лейкоцитов) .

Увеличение скорости кровотока приводит к усилению образования в эндотелии вазодилататоров и сопровождается увеличением образования в эндотелии эндотелиальной NO-синтазы и других ферментов. Напряжение сдвига имеет большое значение в ауторегуляции кровотока. Так, при повышении тонуса артериальных сосудов увеличивается линейная скорость кровотока, что сопровождается увеличением синтеза эндотелиальных вазодилататоров и снижением сосудистого тонуса.

Эндотелийзависимая вазодилатация (ЭЗВД) связана с синтезом в эндотелии преимущественно трех основных веществ: монооксида азота (NO), эндотелиального гиперполяризующего фактора (EDHF) и простациклина. Базальная секреция NO определяет поддержание нормального тонуса сосудов в покое . Ряд факторов, таких как ацетилхолин, аденозинтрифосфорная кислота (АТФ), брадикинин, а также гипоксия, механическая деформация и напряжение сдвига, вызывают так называемую стимулированную секрецию NO, опосредованную системой вторичных мессенжеров.

В норме NO является мощным вазодилататором, а также тормозит процессы ремоделирования сосудистой стенки, подавляя пролиферацию гладкомышечных клеток . Он предотвращает адгезию и агрегацию тромбоцитов, адгезию моноцитов, защищает сосудистую стенку от патологической перестройки и последующего развития атеросклероза и атеротромбоза .

При длительном воздействии повреждающих факторов происходит постепенное нарушение функционирования эндотелия . Способность эндотелиальных клеток освобождать релаксирующие факторы уменьшается, тогда как образование сосудосуживающих факторов сохраняется или увеличивается, т. е. формируется состояние, определяемое как «дисфункция эндотелия». Происходят патологические изменения сосудистого тонуса (общего сосудистого сопротивления и артериального давления), структуры сосудов (структурной сохранности слоев сосудистой стенки, проявления атерогенеза), иммунологических реакций, процессов воспаления, тромбообразования, фибринолиза .

Ряд авторов приводит более «узкое» определение эндотелиальной дисфункции — состояния эндотелия, при котором имеется недостаточная продукция NO , поскольку NO принимает участие в регуляции практически всех функций эндотелия и, кроме того, является фактором, наиболее чувствительным к повреждению.

Выделяют 4 механизма, через которые опосредуется эндотелиальная дисфункция :

1) нарушение биодоступности NO вследствие:

  • снижения синтеза NO при инактивации NO-синтазы;
  • уменьшения плотности на поверхности эндотелиальных клеток мускариновых и брадикининовых рецепторов, раздражение которых в норме приводит к образованию NO;
  • увеличения деградации NO — разрушение NO наступает прежде, чем вещество достигнет места своего действия (во время оксидативного стресса);

2) повышение активности ангиотензинпревращающего фермента (АПФ) на поверхности эндотелиальных клеток;

3) усиление выработки эндотелиальными клетками эндотелина-1 и других вазоконстрикторных веществ;

4) нарушение целостности эндотелия (деэндотелизация интимы), в результате чего циркулирующие вещества, непосредственно взаимодействуя с гладкомышечными клетками, вызывают их сокращение.

Дисфункция эндотелия (ДЭ) является универсальным механизмом патогенеза артериальной гипертензии (АГ), атеросклероза, цереброваскулярных заболеваний, сахарного диабета, ишемической болезни сердца . Причем эндотелиальная дисфункция как сама способствует формированию и прогрессированию патологического процесса, так и основное заболевание нередко усугубляет эндотелиальное повреждение .

При гиперхолестеринемии происходит аккумуляция холестерина, липопротеидов низкой плотности (ЛПНП) на стенках сосудов . Липопротеиды низкой плотности окисляются; следствием такой реакции является высвобождение кислородных радикалов, которые, в свою очередь взаимодействуя с уже окисленными ЛПНП, могут еще более усиливать высвобождение радикалов кислорода . Такие биохимические реакции создают своего рода патологический замкнутый круг. Таким образом, эндотелий оказывается под постоянным воздействием окислительного стресса, что приводит к усиленному разложению NO кислородными радикалами и ослаблению вазодилатации . В итоге ДЭ реализуется в изменении структуры сосудистой стенки или сосудистом ремоделировании в виде утолщения медии сосуда, уменьшении просвета сосуда и внеклеточного матрикса. В крупных сосудах снижается эластичность стенки, толщина которой увеличивается, наступает лейкоцитарная инфильтрация, что предрасполагает, в свою очередь, к развитию и прогрессированию атеросклероза. Ремоделирование сосудов приводит к нарушению их функции и типичным осложнениям АГ и атеросклероза — инфаркту миокарда, ишемическому инсульту, почечной недостаточности .

При преимущественном развитии атеросклероза дефицит NO ускоряет развитие атеросклеротической бляшки от липидного пятна до трещины атеросклеротической бляшки и развития атеротромбоза . Гиперплазия и гипертрофия гладкомышечных клеток увеличивает степень вазоконстрикторного ответа на нейрогуморальную регуляцию, повышает периферическое сопротивление сосудов и является, таким образом, фактором, стабилизирующим АГ. Повышение системного артериального давления сопровождается увеличением внутрикапиллярного давления . Повышенное интрамуральное давление стимулирует образование свободных радикалов, в особенности супероксидного аниона, который, связываясь с вырабатываемым эндотелием оксидом азота, снижает его биодоступность и приводит к образованию пероксинитрита, обладающего цитотоксическим действием на эндотелиальную клетку и активирущего митогенез гладкомышечных клеток, происходит повышенное образование вазоконстрикторов, в особенности эндотелина-1, тромбоксана А2 и простагландина Н2, что стимулирует рост гладкомышечных клеток.

Диагностика функционального состояния эндотелия

Существует большое количество разнообразных методик оценки функционального состояния эндотелия. Их можно разделить на 3 основные группы:

1) оценка биохимических маркеров;
2) инвазивные инструментальные методы оценки функции эндотелия;
3) неинвазивные инструментальные методы оценки функции эндотелия.

Биохимические методы оценки

Снижение синтеза или биодоступности NO является главным в развитии ДЭ. Однако короткий период жизни молекулы резко ограничивает применение измерения NO в сыворотке крови или в моче. К наиболее селективным маркерам эндотелиальной дисфункции относят: фактор фон Виллебранда (ффВ), антитромбин III, десквамированные эндотелиальные клетки, содержание клеточных и сосудистых молекул адгезии (Е-селектин, ICAM-1, VCAM-1), тромбомодулин, рецепторы к протеину С, аннексин-II, простациклин, тканевой активатор плазминогена t-PA, Р-селектин, ингибитор тканевого пути свертывания (TFPI), протеин S.

Инвазивные методы оценки

Инвазивные методы представляют собой химическую стимуляцию мускариновых рецепторов эндотелия эндотелийстимулирующими препаратами (ацетилхолин, метахолин, субстанция Р) и некоторыми прямыми вазодилататорами (нитроглицерин, нитропруссид натрия), которые вводятся в артерию и вызывают эндотелийнезависимую вазодилатацию (ЭНВД). Одним из первых подобных методов стала рентгеноконтрастная ангиография с использованием внутрикоронарного введения ацетилхолина .

Неинвазивные методы диагностики

В последнее время появился большой интерес к применению фотоплетизмографии (ФПГ), т. е. регистрации пульсовой волны с помощью оптического датчика для оценки вазомоторного эффекта, появляющегося в ходе окклюзионной пробы оксида азота и функционального состояния эндотелия. Наиболее удобное место для расположения ФПГ-датчика — палец руки. В формировании ФПГ-сигнала принимает участие преимущественно пульсовая динамика изменений пульсового объема кровотока и, соответственно, диаметра пальцевых артерий, что сопровождается увеличением оптической плотности измеряемого участка. Увеличение оптической плотности определяется пульсовыми локальными изменениями количества гемоглобина. Результаты теста сопоставимы с данными, получаемыми при коронарографии с введением ацетилхолина . Описанный феномен лежит в основе функционирования неинвазивного диагностического аппаратно-программного комплекса «АнгиоСкан-01». Прибор позволяет выявить самые ранние признаки эндотелиальной дисфункции. Технология регистрации и контурный анализ пульсовой волны объема дают возможность получать клинически значимую информацию о состоянии жесткости артерий эластического типа (аорта и ее главные магистрали) и тонусе мелких резистивных артерий, а также проводить оценку функционального состояния эндотелия крупных мышечных и мелких резистивных сосудов (методология аналогична ультразвуковой «манжеточной пробе»).

Фармакологические методы коррекции эндотелиальной дисфункции у пациентов с ХИМ

Методы коррекции ДЭ при ХИМ могут быть разделены на две группы:

1) устранение агрессивных для эндотелия факторов (гиперлипидемии, гипергликемии, инсулинорезистентности, постменопаузальных гормональных изменений у женщин, высокого артериального давления, курения, малоподвижного образа жизни, ожирения) и, таким образом, модификации и уменьшения оксидативного стресса;
2) нормализация синтеза эндотелиального NO .

Для решения поставленных задач в клинической практике используются различные лекарственные препараты.

Статины

Снижение уровня холестерина плазмы крови замедляет развитие атеросклероза и в ряде случаев вызывает регресс атеросклеротических изменений стенки сосудов . Кроме того, статины уменьшают окисление липопротеинов и свободнорадикальное повреждение эндотелиоцитов .

Донаторы NO и субстраты NO-синтазы

Нитраты (органические нитраты, неорганические нитросоединения, нитропруссид натрия) являются донатором NO, т. е. проявляют свое фармакологическое действие посредством высвобождения из них NO . Их применение основано на вазодилатирующих свойствах, способствующих гемодинамической разгрузке сердечной мышцы и стимуляции эндотелийнезависимой вазодилатации коронарных артерий. Длительное введение донаторов NO может привести к ингибированию его эндогенного синтеза в эндотелии. Именно с этим механизмом связывается возможность ускоренного атерогенеза и развития АГ при их хроническом применении .

L-аргинин — субстрат эндотелиальной NO-синтазы, приводит к улучшению функции эндотелия . Однако опыт его применения у больных с АГ, гиперхолестеринемией имеет лишь теоретическое значение.

Антагонисты кальция дигидропиридинового ряда улучшают ЭЗВД за счет увеличения NO (нифедипин, амлодипин, лацидипин, пранидипин, фелодипин и др.) .

иАПФ и антагонисты АТ-II

В экспериментах ЭЗВД удавалось улучшить с помощью ингибиторов ангиотензинпревращающего фермента и антагонистов ангиотензина-2 . иАПФ повышают биодоступность NO путем снижения синтеза ангиотензина-2 и повышения в плазме крови уровня брадикинина.

Другие гипотензивные препараты

Бета-блокаторы обладают вазодилатирующими свойствами за счет стимуляции синтеза NO в эндотелии сосудов и активации системы L-аргинин/NO, а также способностью стимулировать активность NO-синтазы в эндотелиальных клетках .

Тиазидные диуретики приводят к повышению активности NO-синтазы в эндотелиальных клетках. Индапамид оказывает прямое вазодилатирующее действие за счет предполагаемых антиоксидантных свойств, повышая биодоступность NO и уменьшая его разрушение .

Антиоксиданты

Учитывая роль оксидативного стресса в патогенезе эндотелиальной дисфункции, ожидается, что назначение антиоксидантной терапии может стать ведущей стратегией в ее лечении. Доказано обратное развитие дисфункции эндотелия в коронарных и периферических артериях на фоне применения глутатиона, N-ацетил цистеина, витамина C . Препараты, обладающие антиоксидантной и антигипоксантной активностью , могут улучшать функцию эндотелия .

Тиоктовая кислота (ТК, альфа-липоевая кислота)

Предохраняющая роль ТК в отношении эндотелиальных клеток от экстра- и интрацеллюлярного оксидативного стресса показана на культуре клеток. В исследовании ISLAND у больных с метаболическим синдромом ТК способствовала увеличению ЭЗВД плечевой артерии, что сопровождалось уменьшением содержания в плазме интерлейкина-6 и активатора плазминогена-1 . ТК влияет на энергетический обмен, нормализирует синтез NO, снижает окислительный стресс и повышает активность антиоксидантной системы , что может объяснять и уменьшение степени поражения мозга при ишемии-реперфузии .

Винпоцетин

Многочисленные исследования показали увеличение объемного мозгового кровотока при применении этого препарата. Предполагается, что винпоцетин не является классическим вазодилататором, но снимает существующий спазм сосудов . Он усиливает утилизацию кислорода нервными клетками, тормозит поступление и внутриклеточное освобождение ионов кальция .

Депротеинизированный гемодериват крови телят (Актовегин)

Актовегин представляет собой высокоочищенный гемодериват крови телят, состоящий из более чем 200 биологически активных компонентов, включая аминокислоты, олигопептиды, биогенные амины и полиамины, сфинголипиды, инозитолфосфоолигосахариды, продукты обмена жиров и углеводов, свободные жирные кислоты. Актовегин увеличивает потребление и использование кислорода, благодаря чему активирует энергетический метаболизм, переводя энергообмен клеток в сторону аэробного гликолиза, тормозя окисление свободных жирных кислот. При этом препарат увеличивает также содержание высокоэнергетичных фосфатов (АТФ и АДФ) в условиях ишемии, восполняется тем самым возникающий энергетический дефицит. Помимо этого, Актовегин также препятствует образованию свободных радикалов и блокирует процессы апоптоза, тем самым защищая клетки, в особенности нейроны, от гибели в условиях гипоксии и ишемии . Отмечается также значительное улучшение церебральной и периферической микроциркуляции на фоне улучшения аэробного энергообмена сосудистых стенок и высвобождения простациклина и оксида азота. Происходящая при этом вазодилятация и снижение периферического сопротивления являются вторичными по отношению к активации кислородного метаболизма сосудистых стенок .

Результаты, полученные А. А. Федоро-вич, убедительно доказывают, что Актовегин обладает не только ярко выраженным метаболическим действием, повышая функциональную активность микрососудистого эндотелия, но и оказывает влияние на вазомоторную функцию микрососудов. Вазомоторный эффект препарата, вероятнее всего, реализуется через повышение выработки NO микрососудистым эндотелием, следствием чего является существенное улучшение функционального состояния гладкомышечного аппарата микрососудов. Однако нельзя исключать и прямого миотропного положительного эффекта .

В недавней работе группы авторов изучена роль Актовегина как эндотелиопротектора у пациентов с ХИМ. При его применении у пациентов зарегистрировано улучшение кровотока в каротидной и вертебрально-базилярной системах, что коррелировало с улучшением неврологической симптоматики и подтверждалось показателями нормализацией функционального состояния эндотелия .

Несмотря на появление отдельных научных исследований, проблема ранней диагностики эндотелиальной дисфункции при ХИМ остается недостаточно изученной. В то же время своевременная диагностика и последующая фармакологическая коррекция ДЭ позволят значительно уменьшить количество пациентов с цереброваскулярными заболеваниями или достичь максимального регресса клинической картины у пациентов с разными стадиями хронической ишемии головного мозга.

Литература

  1. Федин А. И. Избранные лекции по амбулаторной неврологии. М.: ООО «АСТ 345». 2014. 128 с.
  2. Суслина З. А., Румянцева С. А. Нейрометаболическая терапия хронической ишемии мозга. Методическое пособие. М.: ВУНМЦ МЗ РФ, 2005. 30 с.
  3. Шмидт Е. В., Лунев Д. К., Верещагин Н. В. Сосудистые заболевания головного и спинного мозга. М.: Медицина, 1976. 284 с.
  4. Bonetti P. O., Lerman L. O., Lerman A. et al. Endothelial dysfunction. A marker of atherosclerotic risk // Arterioscler. Thromb. Vasc. Biol. 2003. Vol. 23. P. 168-175.
  5. Бувальцев В. И. Дисфункция эндотелия как новая концепция профилактики и лечения сердечно-сосудистых заболеваний // Междунар. мед. журн. 2001. № 3. С. 202-208.
  6. Сторожаков Г. И., Верещагина Г. С., Малышева Н. В. Эндотелиальная дисфункция при артериальной гипертонии у пациентов пожилого возраста // Клиническая геронтология. 2003. № 1. С. 23-28.
  7. Esper R. J., Nordaby R. A., Vilarino J. O. et al. Endothelial dysfunction: a comprehensive appraisal // Cardiovascular Diabetology. 2006. Vol. 5 (4). P. 1-18.
  8. Mudau M., Genis A., Lochner A., Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis // Cardiovasc. J. Afr. 2012. Vol. 23 (4). P. 222-231.
  9. Chhabra N. Endothelial dysfunction — a predictor of atherosclerosis // Internet J. Med. Update. 2009. Vol. 4 (1). P. 33-41.
  10. Бувальцев В. И. Вазодилатирующая функция эндотелия и возможные пути ее коррекции у больных артериальной гипертонией. Дис. … д-ра мед. наук: 14.00.06. М., 2003. 222 с.
  11. Новикова Н. А. Дисфункция эндотелия — новая мишень медикаментозного воздействия при сердечно-сосудистых заболеваниях // Врач. 2005. № 8. С. 51-53.
  12. Verma S., Buchanan M. R., Anderson T. J. Endothelial function testing as a biomarker of vascular disease // Circulation. 2003. Vol. 108. P. 2054-2059.
  13. Landmesser U., Hornig B., Drexler H. Endothelial function. A critical determinant in atherosclerosis? // Circulation. 2004. Vol. 109 (suppl II). P. II27-II33.
  14. Чазов Е. И., Кухарчук В. В., Бойцов С. А. Руководство по атеросклерозу и ишемической болезни сердца. М.: Медиа Медика, 2007. 736 с.
  15. Соболева Г. Н., Рогоза А. Н., Шумилина М. В., Бузиашвили Ю. И., Карпов Ю. А. Дисфункция эндотелия при артериальной гипертонии: вазопротективные эффекты β-блокаторов нового поколения // Росс. мед. журн. 2001. Т. 9, № 18. С. 754-758.
  16. Воробьева E. H., Шумахер Г. И., Хорева М. А., Осипова И. В. Дисфункция эндотелия — ключевое звено в патогенезе атеросклероза // Рос. кардиол. журн. 2010. № 2. С. 84-91.
  17. Madhu S. V., Kant S., Srivastava S., Kant R., Sharma S. B., Bhadoria D. P. Postprandial lipaemia in patients with impaired fasting glucose, impaired glucose tolerance and diabetes mellitus // Diabetes Res. Clin. Practice. 2008. Vol. 80. P. 380-385.
  18. Петрищев Н. Н. Дисфункция эндотелия. Причины, механизмы, фармакологическая коррекция. СПб: Изд-во СПбГМУ, 2003. 181 с.
  19. Воронков А. В. Эндотелиальная дисфункция и пути ее фармакологической коррекции. Дисс. … д-ра мед. наук: 14.03.06. Волгоград, 2011. 237 с.
  20. Gibbons G. H., Dzau V. J. The emerging concept of vascular remodeling // N. Engl. J. Med. 1994. Vol. 330. P. 1431-1438.
  21. Lind L., Granstam S. O., Millgård J. Endothelium-dependent vasodilation in hypertension: a review // Blood Pressure. 2000. Vol. 9. P. 4-15.
  22. Fegan P. G., Tooke J. E., Gooding K. M., Tullett J. M., MacLeod K. M., Shore A. C. Capillary pressure in subjects with type 2 diabetes and hypertension and the effect of antihypertensive therapy // Hypertension. 2003. Vol. 41 (5). P. 1111-1117.
  23. Парфенов А. С. Ранняя диагностика сердечно сосудистых заболеваний с использованием аппаратно-программного комплекса «Ангиоскан-01» // Поликлиника. 2012. № 2 (1). С. 70-74.
  24. Фонякин А. В., Гераскина Л. А. Статины в профилактике и лечении ишемического инсульта // Анналы клинической и экспериментальной неврологии. 2014. № 1. С. 49-55.
  25. Hussein O., Schlezinger S., Rosenblat M., Keidar S., Aviram M. Reduced susceptibility of low density lipoprotein (LDL) to lipid peroxidation after fluvastatin therapy is associated with the hypocholesterolemic effect of the drug and its binding to the LDL // Atherosclerosis. 1997. Vol. 128 (1). P. 11-18.
  26. Drexler H. Nitric oxide and coronary endothelial dysfunction in humans // Cardiovasc. Res. 1999. Vol. 43. P. 572-579.
  27. Ikeda U., Maeda Y., Shimada K. Inducible nitric oxide synthase and atherosclerosis // Clin. Cardiol. 1998. Vol. 21. P. 473-476.
  28. Creager M. A., Gallagher S. J., Girerd X. J., Coleman S. M., Dzau V. J., Cooke J. P. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans // J. Clin. Invest. 1992. Vol. 90. P. 1242-1253.
  29. Шилов А. М. Место блокаторов кальциевых каналов третьего поколения в континууме метаболического синдрома // Трудный пациент. 2014. № 12 (4). С. 20-25.
  30. Berkels R., Egink G., Marsen T. A., Bartels H., Roesen R., Klaus W. Nifedipine increases endothelial nitric oxide bioavailability by antioxidative mechanisms // Hypertension. 2001. V. 37. № 2. P. 240-245.
  31. Wu C. C., Yen M. H. Nitric oxide synthase in spontaneously hypertensive rats/C.C. Wu // J. Biomed. Sci. 1997. Vol. 4 (5). P. 249-255.
  32. Young R. H., Ding Y. A., Lee Y. M., Yen M. H. Cilazapril reverses endothelium-dependent vasodilator response to acetylcholine in mesenteric artery from spontaneously hypertensive rats // Am. J. Hypertens. 1995. Vol. 8 (9). P. 928-933.
  33. Parenti A., Filippi S., Amerini S., Granger H. J., Fazzini A., Ledda F. Inositol phosphate metabolism and nitric-oxide synthase activity in endothelial cells are involved in the vasorelaxant activity of nebivolol // J. Pharmacol. Exp. Ther. 2000. Vol. 292 (2). P. 698-703.
  34. Murphy M. P. Nitric oxide and cell death // Biochim. Biophys. Acta. 1999. Vol. 1411. P. 401-414.
  35. Перфилова В. Н. Кардиопротекторные свойства структурных аналогов ГАМК. Автореф. дис. … д-ра биол. наук. Волгоград, 2009. 49 с.
  36. Ishide T., Amer A., Maher T. J., Ally A. Nitric oxide within periaqueductal gray modulates glutamatergic neurotransmission and cardiovascular responses during mechanical and thermal stimuli // Neurosci Res. 2005. Vol. 51 (1). P. 93-103.
  37. Sabharwal A. K., May J. M. Alpha-Lipoic acid and ascorbate prevent LDL oxidation and oxidant stress in endothelial cells // Mol. Cell. Biochem. 2008. 309 (1-2). P. 125-132.
  38. Камчатнов П. Р., Абусуева Б. А., Казаков А. Ю. Применение альфа-липоевой кислоты при заболеваниях нервной системы // Журнал неврологии и психиатрии им. С. С. Корсакова. 2014. Т. 114., № 10. С. 131-135.
  39. Карнеев А. Н., Соловьева Э. Ю., Федин А. И., Азизова О. А. Использование препаратов α-липоевой кислоты в качестве нейропротективной терапии хронической ишемии мозга // Справочник поликлинического врача. 2006. № 8. С. 76-79.
  40. Бурцев Е. М., Савков B. C., Шпрах В. В., Бурцев М. Е. 10-летний опыт применения кавинтона при цереброваскулярных нарушениях // Журнал неврологии и психиатрии им. С. С. Корсакова. 1992. № 1. С. 56-61.
  41. Суслина З. А., Танашян М. М., Ионова В. Г., Кистенев Б. А., Максимова М. Ю., Шарыпова Т. Н. . Кавинтон в лечении больных с ишемическими нарушениями мозгового кровообращения // Русский медицинский журнал. 2002. № 25. С. 1170-1174.
  42. Molnár P., Erdö S. L. Vinpocetine is as potent as phenytoin to block voltage-gated Na+ channels in rat cortical neurons // Eur. J. Pharmacol. 1995. Vol. 273 (5). P. 303-306.
  43. Ваизова О. Е. Фармакологическая и экстракорпоральная коррекция дисфункции сосудистого эндотелия при церебральном атеросклерозе. Дис. … д-ра мед. наук: 14.00.25. Томск, 2006. 352 с.
  44. Machicao F., Muresanu D. F., Hundsberger H., Pflüger M., Guekht A. Pleiotropic neuroprotective and metabolic effects of Actovegin’s mode of action // J Neurol Sci. 2012; 322 (1): 222-227.
  45. Elmlinger M. W., Kriebel M., Ziegler D. Neuroprotective and Anti-Oxidative Effects of the Hemodialysate Actovegin on Primary Rat Neurons in Vitro // Neuromolecular Med. 2011; 13 (4): 266-274.
  46. Асташкин Е. И., Глейзер М. Г. и др. Актовегин снижает уровень радикалов кислорода в образцах цельной крови пациентов с сердечной недостаточностью и подавляет развитие некроза перевиваемых нейронов человека линии SK-N-SH. Доклады Академии наук. 2013: 448 (2); 232-235.
  47. Федорович А. А., Рогоза А. Н., Канищева Е. М., Бойцов С. А. Динамика функциональной активности микрососудистого эндотелия в процессе острого фармакологического теста препаратом Актовегин // Сonsilium medicum. 2010. Т. 12. № 2. С. 36-45.
  48. Учкин И. Г., Зудин А. М., Багдасарян А. Г., Федорович А. А. Влияние фармакотерапии хронических облитерирующих заболеваний артерий нижних конечностей на состояние микроциркуляторного русла // Ангиология и сосудистая хирургия. 2014. Т. 20, № 2. С. 27-36.
  49. Федин А. И., Румянцева С. А. Избранные вопросы базисной интенсивной терапии нарушений мозгового кровообращения. Методические указания. М.: Интермедика, 2002. 256 с.
  50. Федин А. И., Старых Е. П., Парфенов А. С., Миронова О. П., Абдрахманова Е. К., Старых Е. В. Фармакологическая коррекция эндотелиальной дисфункции при атеросклеротической хронической ишемии головного мозга // Журнал неврологии и психиатрии им. С. С. Корсакова. 2013. Т. 113. № 10. С. 45-48.

А. И. Федин,
Е. П. Старых 1
М. В. Путилина, доктор медицинских наук, профессор
Е. В. Старых, доктор медицинских наук, профессор
О. П. Миронова, кандидат медицинских наук
К. Р. Бадалян

Ч то является причиной развития метаболического синдрома и инсулинорезистентности (ИР) тканей? Какова связь между ИР и прогрессированием атеросклероза? На эти вопросы пока не получено однозначного ответа. Предполагают, что первичным дефектом, лежащим в основе развития ИР, является дисфункция эндотелиальных клеток сосудов.

Эндотелий сосудов представляет собой гормонально активную ткань, которую условно называют самой большой “эндокринной железой” человека. Если выделить из организма все клетки эндотелия, их вес составит приблизительно 2 кг, а общая протяженность - около 7 км. Уникальное положение клеток эндотелия на границе между циркулирующей кровью и тканями делает их наиболее уязвимыми для различных патогенных факторов, находящихся в системном и тканевом кровотоке. Именно эти клетки первыми встречаются с реактивными свободными радикалами, с окисленными липопротеинами низкой плотности, с гиперхолестеринемией, с высоким гидростатическим давлением внутри выстилаемых ими сосудов (при артериальной гипертонии), с гипергликемией (при сахарном диабете). Все эти факторы приводят к повреждению эндотелия сосудов, к дисфункции эндотелия, как эндокринного органа и к ускоренному развитию ангиопатий и атеросклероза. Перечень функций эндотелия и их нарушений перечислены в таблице 1.

Функциональная перестройка эндотелия при воздействии патологических факторов проходит несколько стадий:

I стадия - повышенная синтетическая активность клеток эндотелия, эндотелий работает как “биосинтетическая машина”.

II стадия - нарушение сбалансированной секреции факторов, регулирующих тонус сосудов, систему гемостаза, процессы межклеточного взаимодействия. На этой стадии нарушается естественная барьерная функция эндотелия, повышается его проницаемость для различных компонентов плазмы.

III стадия - истощение эндотелия, сопровождающееся гибелью клеток и замедленными процессами регенерации эндотелия.

Из всех факторов, синтезируемых эндотелием, роль “модератора” основных функций эндотелия принадлежит эндотелиальному фактору релаксации или оксиду азота (NO). Именно это соединение регулирует активность и последовательность “запуска” всех остальных биологически-активных веществ, продуцируемых эндотелием. Оксид азота не только вызывает расширение сосудов, но и блокирует пролиферацию гладкомышечных клеток, препятствует адгезии клеток крови и обладает антиагрегантными свойствами. Таким образом, оксид азота является базовым фактором антиатерогенеза.

К сожалению, именно NO-продуцирующая функция эндотелия оказывается наиболее ранимой. Причина тому - высокая нестабильность молекулы NO, являющейся по природе своей свободным радикалом. В результате благоприятное антиатерогенное действие NO нивелируется и уступает место токсическому атерогенному действию других факторов поврежденного эндотелия.

В настоящее время существуют две точки зрения на причину эндотелиопатии при метаболическом синдроме . Сторонники первой гипотезы утверждают, что дисфункция эндотелия вторична по отношению к имеющейся ИР, т.е. является следствием тех факторов, которые характеризуют состояние ИР - гипергликемии, артериальной гипертонии, дислипидемии. При гипергликемии в эндотелиальных клетках активируется фермент протеинкиназа-С, который увеличивает проницаемость сосудистых клеток для белков и нарушает эндотелий-зависимую релаксацию сосудов. Кроме того, гипергликемия активирует процессы перекисного окисления, продукты которого угнетают сосудорасширяющую функцию эндотелия. При артериальной гипертонии повышенное механическое давление на стенки сосудов приводит к нарушению архитектоники эндотелиальных клеток, повышению их проницаемости для альбумина, усилению секреции сосудосуживающего эндотелина-1, ремоделированию стенок сосудов. Дислипидемия повышает экспрессию адгезивных молекул на поверхности эндотелиальных клеток, что дает начало формированию атеромы. Таким образом, все перечисленные состояния, повышая проницаемость эндотелия, экспрессию адгезивных молекул, снижая эндотелий-зависимую релаксацию сосудов, способствуют прогрессированию атерогенеза.

Сторонники другой гипотезы считают, что дисфункция эндотелия является не следствием, а причиной развития ИР и связанных с ней состояний (гипергликемии, гипертонии, дислипидемии). Действительно, для того чтобы соединиться со своими рецепторами, инсулин должен пересечь эндотелий и попасть в межклеточное пространство. В случае первичного дефекта эндотелиальных клеток трансэндотелиальный транспорт инсулина нарушается. Следовательно, может развиться состояние ИР. В таком случае ИР будет вторичной по отношению к эндотелиопатии (рис. 1).

Рис. 1. Возможная роль дисфункции эндотелия в развитии синдрома инсулинорезистентности

Для того, чтобы доказать эту точку зрения, необходимо исследовать состояние эндотелия до появления симптомов ИР, т.е. у лиц с высоким риском развития метаболического синдрома. Предположительно, к группе высокого риска формирования синдрома ИР относятся дети, родившиеся с низким весом (менее 2,5 кг). Именно у таких детей впоследствии в зрелом возрасте появляются все признаки метаболического синдрома. Связывают это с недостаточной внутриутробной капилляризацией развивающихся тканей и органов, включая поджелудочную железу, почки, скелетную мускулатуру. При обследовании детей в возрасте 9-11 лет, родившихся с низким весом, было обнаружено достоверное снижение эндотелий-зависимой релаксации сосудов и низкий уровень антиатерогенной фракции липопротеидов высокой плотности, несмотря на отсутствие у них других признаков ИР. Это исследование позволяет предположить, что, действительно, эндотелиопатия первична по отношению к ИР.

До настоящего времени не получено достаточных данных в пользу первичной или вторичной роли эндотелиопатии в генезе ИР. В то же время неоспоримым является факт, что эндотелиальная дисфункция является первым звеном в развитии атеросклероза, связанного с синдромом ИР . Поэтому поиск терапевтических возможностей восстановления нарушенной функции эндотелия остается наиболее перспективным в предупреждении и лечении атеросклероза. Все состояния, входящие в понятие метаболического синдрома (гипергликемия, артериальная гипертония, гиперхолестеринемия) усугубляют дисфункцию эндотелиальных клеток. Поэтому устранение (или коррекция) этих факторов безусловно будет способствовать улучшению функции эндотелия. Перспективными препаратами, позволяющими улучшить функцию эндотелия, остаются антиоксиданты, устраняющие повреждающее воздействие окислительного стресса на клетки сосудов, а также лекарства, повышающие продукцию эндогенного оксида азота (NO), например, L-аргинин.

В таблице 2 перечислены препараты, у которых доказано антиатерогенное действие посредством улучшения функции эндотелия. К ним относятся: статины (симвастатин ), ингибиторы ангиотензинпревращающего фермента (в частности, эналаприл ), антиоксиданты, L-аргинин, эстрогены.

Экспериментальные и клинические исследования по выявлению первичного звена в развитии ИР продолжаются. Одновременно идет поиск препаратов, способных нормализовать и сбалансировать функции эндотелия при различных проявлениях синдрома инсулинорезистентности. В настоящее время стало совершенно очевидно, что тот или иной препарат только в том случае сможет оказать антиатерогенное воздействие и предупредить развитие сердечно-сосудистых заболеваний, если он прямо или опосредованно восстанавливает нормальную функцию эндотелиальных клеток.

Симвастатин -

Зокор (торговое название)

(Merck Sharp & Dohme Idea)

Эналаприл -

Веро-эналаприл (торговое название)

(Верофарм ЗАО)

Нарушение функционального состояния эндотелия сосудов в клинических условиях можно диагностировать по биохимическим и функциональным маркерам. К биохимическим маркерам поврежденного эндотелия относятся повышение концентрации в крови биологически активных веществ, синтезируемых эндотелием или экспрессируемых на его поверхности.

Наиболее значимые из них:

Фактор Виллебранда;

Эндотелии-1;

Молекулы адгезии (Е-селектин, Р-селектин, VCAM-1 и др.);

Тканевой активатор плазминогена;

Тромбомодулин;

Фибронектин.

Фактор Виллебранда (vWf) - это гликопротеин, синтезируемый эндотелиальными клетками сосудов. Его концентрация в плазме крови в норме не превышает 10 мкг/мл. Фактор Виллебранда необходим для нормального функционирования фактора VIII свертывания крови. Другой важной функцией фактора VIII является образование агрегатов из тромбоцитов в местах поврежденного эндотелия. В этих случаях происходят связывание vWf с субэндотелием и образование мостика между поверхностью субэндотелия и тромбоцитами. Значение vWf в регуляции системы гемостаза подтверждается также тем, что при врожденной неполноценности или дисфункции этого белка развивается достаточно часто наблюдаемое заболевание - болезнь Виллебранда. В ряде проспективных исследований, выполненных в последние годы, показано, что высокий уровень vWf у лиц с сердечно-сосудистой патологией может быть важным для прогноза вероятности инфаркта миокарда и летального исхода. Считается, что уровень vWf отражает степень поражения сосудистого эндотелия. Вопеи и соавт. первыми предложили определять уровень vWf в плазме для оценки степени повреждения сосудистого эндотелия. Предложенная ими гипотеза основывалась на том, что у больных с облитерирующим атеросклерозом конечностей или септицемией повышенный уровень vWf прямо отражал обширность сосудистого поражения. В последующих исследованиях показано повышение уровня vWf при разных клинических состояниях с повреждением эндотелиальных клеток и обнажением субэндотелиального слоя (при АГ, острой и хронической почечной недостаточности, ДН и васкулите).

Данные, полученные в отделении нефропатии ГУ ЭНЦ РАМН, указывают на то, что по мере нарастания тяжести АГ и диабетического поражения почек увеличивается концентрация vWf в плазме крови, что свидетельствует о тяжелом повреждении сосудистого эндотелия (рис. 5.3).

Эндотепин-l. В 1988 г. М. Yanagisawa и соавт. охарактеризовали вазоконстриктор эндотелиального происхождения как пептид, состоящий из 21 аминокислотного остатка, и назвали его эндотелином. Дальнейшие исследования показали, что существует семейство эндо- телинов, которое состоит по меньшей мере из 4 эндотелиновых пептидов со сходной химической структурой. В настоящее время изуче-



на химическая структура эндотелина-1, эндотелина-2 и эндотелина-3.

Большая часть (до 70-75 %) эндотелина-1 секретируется эндотелиальными клетками в направлении гладкомышечных клеток сосудистой стенки. Связывание эндотелина-1 со специфическими рецепторами на мембранах гладкомышечных клеток приводит к их сокращению и, в конечном счете, к вазоконстрикции. В экспериментах на животных показано, что in vivo эндотелины являются самыми мощными из известных в настоящее время вазоконстрикторных факторов.

В исследовании, проведенном в ГУ ЭНЦ РАМН, мы показали, что у больных СД концентрация эндотелина-1 возрастает по мере нарастания тяжести ДН и АГ (рис. 5.4).

Молекулы адгезии. Маркерами активированного эндотелия и лейкоцитов являются растворимые формы адгезивных молекул в сыворотке крови (Adams, 1994). Наибольшую диагностическую значимость имеют молекулы адгезии семейств селектинов и иммуноглобулинов (Е-селектин, межклеточные молекулы - ICAM-1, -2, -3 и поверхностная молекула адгезии - VCAM-1).

Е-селектин, или ELAM-1 (англ. Endothelial Leucocyte Adhesion Molecule) - адгезивная молекула, выявляемая на эндотелиальных клетках. При воздействии повреждающих факторов активированный эндотелий синтезирует и экспрессирует эту молекулу, что создает предпосылки для последующего рецепторного взаимодействия, реализующегося в адгезии лейкоцитов и тромбоцитов с развитием стаза крови.

ICAM-1 (англ. Intercellular Adhesion Molecule, CD54) - адгезивная молекула гемопоэтических и негемопоэтических клеток. Усиливает

экспрессию этой молекулы воздействие IL-2, фактора некроза опухолей a. ICAM-1 может существовать в мембраносвязанной и растворимой (сывороточной) формах (sICAM-1). Последняя появляется в сыворотке крови в результате протеолиза и слущивания ICAM-1 с мембраны ICAM-1 -позитивных клеток. Количество сывороточной sICAM-1 коррелирует с выраженностью клинических проявлений заболевания и может служить признаком активности процесса.

VCAM-1 (англ. Vascular Cellular Adhesion Molecule, CD106) - молекула адгезии сосудистых клеток, экспрессируется на поверхности активированного эндотелия и других типах клеток. Появление растворимой биологически активной формы sVCAM-І в сыворотке также может происходить в результате протеолиза и отражать активность процесса.

Перечисленные молекулы адгезии (Е-селектин, 1САМ-1 и VCAM-1) рассматриваются как возможные основные маркеры, отражающие процесс активации эндотелиальных клеток и лейкоцитов.

Нарастание микрососудистых осложнений и АГ при СД сопровождается увеличением экспрессии адгезивных молекул, указывающим на тяжелое и необратимое повреждение клеток эндотелия .

Функциональным маркером поврежденного эндотелия является нарушение эндотелийзависимой вазодилатации сосудов, сохранность которой обеспечивается секрецией NO. Именно ему принадлежит роль модератора основных функций эндотелия. Это соединение регулирует активность и последовательность запуска всех остальных биологически активных веществ, продуцируемых эндотелием. NO не только вызывает расширение сосудов, но и блокирует пролиферацию гладкомышечных клеток, препятствует адгезии клеток крови и обладает антиагрегантными свойствами. Таким образом, NO является базовым фактором антиатерогенеза.

К сожалению, NO-продуцирующая функция эндотелия наиболее ранима. Причиной этому является высокая нестабильность молекулы NO, по природе своей свободного радикала. В результате благоприятное антиатерогенное действие NO нивелируется и уступает токсическому атерогенному действию других факторов поврежденного эндотелия.

Вследствие высокой нестабильности молекулы NO прямое измерение его концентрации в крови практически невозможно. Поэтому для оценки NO-синтетической функции эндотелия используется непрямой и неинвазивный метод, основанный на изучении ответа эндотелия на различные стимулы (в частности, на реактивную гиперемию). При этом исследуется изменение диаметра плечевой или лучевой артерии (при помощи высокоразрешающей ультразвуковой допплерографии) в ответ на ее кратковременное пережатие (5 мин) с помощью пневматической манжеты. Расширение плечевой артерии после такого пережатия обусловлено выделением NO эндотелием артерий. Доказательства именно эндотелиальной зависимости расширения артерий получено в исследованиях с использованием специфического ингибитора NO - L-NMMA, который снижал почти на 70 % наблюдаемый эффект расширения. В норме эндотелийзависимое расширение плечевой артерии в ответ на реактивную гиперемию составляет 8-10 %. Уменьшение этого показателя свидетельствует о низкой продукции NO эндотелием сосудов.

В исследовании, проведенном в ГУ ЭНЦ РАМН, убедительно продемонстрировано, что по мере нарастания тяжести АГ и ДН снижается эндотелийзависимая вазодилатация плечевой артерии, что свидетельствует о выраженном нарушении функции эндотелия у этих больных .