Монохроматический свет. Большая советская энциклопедия - монохроматический свет

Любой свет представляет собой электромагнитное излучение, которое воспринимается глазом. Согласно различным теориям физики, он может считаться как волной, так и потоком фотонов - в зависимости от ситуации. Субъективной характеристикой света является цвет, который воспринимается человеческим глазом. Для монохроматического излучения он определяется частотой волны, а для сложного - спектральным составом.

Общее понятие

Монохроматический свет - это световые колебание волн, которые имеют одинаковую частоту. К нему можно отнести как часть воспринимаемого глазом спектра, так и невидимого (инфракрасный, рентгеновский, ультрафиолетовый).

Под монохроматическим понимают излучение которые имеют одинаковую длину и частоту колебания. Как видим, эти два определения тождественны. Можно сделать вывод, что монохроматический свет и монохроматическое излучение - это одно и то же.

Получение света одного тона. Монохроматоры

В естественных условиях нет источника, который бы испускал свет с одной длиной волны и одинаковой частотой колебания. Монохроматический свет получают при помощи специальных приборов, которые называют монохроматорами. Это возможно различными способами. Для первого варианта используются призматические системы. С их помощью выделяют поток с необходимой степенью монохроматичности.

Второй метод, который позволяет выделить монохроматический пучок света, основывается на свойствах дифракции и применении Третьим способом получения является производство или источников света, в которых при испускании волны происходит только один электронный переход.

Применение монохроматического света и приборов его излучения

Самым простым примером может служить лазер. Его создание стало возможным благодаря дискретным свойствам света. Использование отличается многогранностью: их применяют в медицине, рекламе, строительстве, промышленности, астрономии и многих других сферах. При этом монохроматического света, испускаемого прибором, благодаря его конструкции может быть строго постоянной. По времени это может быть как непрерывный, так и дискретный свет. Также к монохроматорам относят различного рода спектрометры, которые применяются в самых разных сферах.

Монохроматический свет и его влияние на организм человека

Основными спектральными цветами являются красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Существует направление медицины, которое изучает их влияние на организм человека. Называется оно офтальмохромотерапией.

Использование красного света помогает в избавлении от различных заболеваний верхних дыхательных путей. Оранжевый помогает улучшить кровообращение и пищеварение, ускоряет регенерацию мышечной и нервной ткани. Желтый цвет благотворно влияет на работу желудочно-кишечного тракта и оказывает очищающее воздействие на весь организм.

Зеленый способствует излечению гипертонии, неврозов, утомления, бессонницы. Голубой благодаря своим антибактериальным свойствам способен снять воспалительные процессы в горле. Также его применяют при лечении ревматизма, экземы, витилиго, гнойных высыпаний на кожных покровах. Синий монохроматический свет благотворно влияет на и гипофиз, а фиолетовый повышает тонус мышц, головного мозга, глаз, позволяет нормализовать работу органов ЖКТ и нервной системы в общем.

Как видно из вышесказанного, однотонный свет необходим не только для идеализированных экспериментов физиков, он способен приносить реальную пользу здоровью, не говоря уже о промышленности и других сферах человеческой деятельности.

Преломление

Явление, при котором меняется направление распространения луча света, когда он переходит из одной среды в другую, как например, из вакуума или воздуха в такую другую среду, как стекло или вода или наоборот.

Показатель преломления
Численное значение, указывающее на степень преломления среды и выраженное формулой n=sin i/sin r. "n" это константа, не связанная с углом падения светового луча указывающая на показатель преломления преломляющей среды по сравнению со средой, из которой исходит луч.
Для обычного оптического стекла "n" , как правило, обозначает показатель преломления стекла по отношению к воздуху.

Дисперсия

Явление, при котором оптические характеристики среды меняются в зависимости от длинны волны светового луча, проходящего через среду. Когда свет поступает в линзу или призму, характеристики дисперсии линзы или призмы вызывают изменения показателя преломления в зависимости от длинны волны, в результате чего свет рассеивается. Иногда это явление называют также цветовой дисперсией.

Необычная частичная дисперсия
Человеческий глаз в состоянии чувствовать монохроматические световые волны в диапазоне от 400 нм (фиолетофые) до 750 нм (красные). В этом диапазоне разница в показателе преломления между двумя различными длинами волн называется частичной дисперсией. Большинство обычных оптических материалов обладают аналогичными характеристиками частичной дисперсии. Однако характеристики частичной дисперсии различны у некоторых стеклянных материалов, таких, как стекло, у которого бывает более значительная частичная дисперсия при коротких волнах, как стекло FK, у которого небольшой индекс преломления и низкие характеристики дисперсии, флюорит и стекло, у которого более значительная частичная дисперсия при длинных волнах. Эти типы стекла характеризуются как обладающие необычной частичной дисперсией. Стекло, обладающее такими характеристиками, используется в апохроматах, чтобы компенсировать хроматическую аберрацию.



Дисперсия света в призме

Отражение

Отражение отличается от преломления тем, что представляет собой явление, ведущее к тому, что часть света, падающего на стекло или на другую среду, отделяется и идет в совершенно новом направлении. Направление движения одинаково, независимо от длинны волны. Когда свет попадает в линзу, не имеющую противоотражательного покрытия, и выходит из нее, то приблизительно 5% света отражается на границу между стеклом и воздухом. Количество отраженного света зависит от показателя преломления стеклянного материала.

Отражение света

Дифракция

Явление, при котором световые волны отклоняются от прямолинейного распространения вблизи границ непрозрачных тел. Светящиеся точка излучает свет во все стороны, образуя неограниченный пучок лучей. Если на пути этого пучка расположить диафрагму, то за ней свет будет распространяться в виде ограниченного пучка. Однако при каком-то минимальном отверстии лучи теряют свою прямолинейность и огибают край диафрагмы - наступает момент дифракции света. Дифракционное изображение святящийся точки представляет собой святящееся пятно. окруженное концентрическими кольцами. Дифракция вызывает уменьшение контрастности и разрешающей способности изображения, в результате чего получается неконтрастное изображение. Хотя дифракция имеет тенденцию появляться тогда, когда диаметр диафрагмы меньше определенного размера, на самом деле она зависит не только от диаметра диафрагмы, но и от различных факторов, таких, как длинна волны света, фокусное расстояние и светосила объектива.

Интерференция

оптическое явление, возникающие при взаимодействии (наложении в пространстве) двух или более световых волн, состоящие во взаимном их усилении или ослаблении. Интерференция возникает, если разность фаз складываемых световых колебаний постоянна во времени. колебания световой волны, удовлетворяющие этим условиям, называют когерентными.

Интерференция в фотографии: просветленная оптика, цветные светофильтры, дихроичные зеркала.

2) монохроматическое и сложное видимое излучение

Монохромное излучение , Мо́нохромати́ческое излуче́ние (от др.-греч. μόνος - один, χρῶμα - цвет) - электромагнитное излучение, обладающее очень малым разбросом частот, в идеале - одной частотой (длиной волны).

Монохроматическое излучение формируется в системах, в которых существует только один разрешённый электронный переход из возбуждённого в основное состояние.

Источники монохромного излучения

На практике используют несколько способов получения монохромного излучения.

  • призматические системы для выделения потока излучения с заданной степенью монохроматичности
  • системы на основе дифракционной решетки
  • лазеры, излучение которых не только высоко монохроматично, но и когерентно
  • газоразрядные лампы и другие источники света, в которых происходит преимущественно один электронный переход (например, натриевая лампа, в излучении которой преобладает наиболее яркая линия D или Ртутная лампа). Газоразрядные лампы часто используют в сочетании со светофильтрами, выделяющими из линейчатого спектра лампы нужную линию.

Монохроматор на базе дифракционной решётки

Видимое излучение (свет) - излучение, которое, по­падая на сетчатую оболочку глаза, может вызвать зри­тельное ощущение (ощущение - превращение энергии внешнего раздражителя в факт сознания). Видимое из­лучение имеет длины волн монохроматических состав­ляющих в пределах 380-780 нм.

Инфракрасное излучение имеет длины волн моно­хроматических составляющих, большие длин волн види­мого излучения (но не более 1 мм). МКО предлагает следующее деление ИК области излучений: ИК-А от 780 до 1400 нм; ИК-В от 1400 до 3000 нм; ИК-С от 3000 до 10е нм (от 3 мкм до 1 мм).

Спектр излучения - совокупность монохроматиче­ских излучений, входящих в состав сложного излуче­ния. Спектр излучения может описываться графической, аналитической илн табличной зависимостью. Источники излучения могут иметь сплошной, полосатый, линейча­тый спектр или спектр, имеющий сплошную и линейча­тую составляющие.

3) границы цветных полос видимого излучения λ

Монохромное излучение , Мо́нохромати́ческое излуче́ние (от др.-греч. μόνος - один, χρῶμα - цвет) - электромагнитное излучение, обладающее очень малым разбросом частот, в идеале - одной частотой (длиной волны).

Монохроматическое излучение формируется в системах, в которых существует только один разрешённый электронный переход из возбуждённого в основное состояние.

На практике используют несколько способов получения монохромного излучения.

· призматические системы для выделения потока излучения с заданной степенью монохроматичности

· системы на основе дифракционной решетки

· лазеры, излучение которых не только высоко монохроматично, но и когерентно

· газоразрядные лампы и другие источники света, в которых происходит преимущественно один электронный переход (например, натриевая лампа, в излучении которой преобладает наиболее яркая линия D или Ртутная лампа). Газоразрядные лампы часто используют в сочетании со светофильтрами, выделяющими из линейчатого спектра лампы нужную линию.

Монохроматизаторы (монюроматоры).

Монохроматизаторами или монохроматорами называют устройства для получения света с заданной длиной волны. При конструировании монохроматизаторов используют разные оптические явления: поглощение света, интерференцию, дисперсию и т. д. Наибольшее распространение в практике абсорбционной спектроскопии имеют приборы, в которых в качестве монохроматизаторов применяются светофильтры (абсорбционные, интерференционные или интерференционно-поляризационные) и призмы.

Действие абсорбционных светофильтров основано на том, что при прохождении света через тонкий слой вследствие поглощения происходит изменение величины и спектрального состава проходящего светового потока. Абсорбционные светофильтры имеют небольшую прозрачность (T = 0,1) и довольно широкую полосу пропускания (D l = 30 нм и более). Характеристики интерференционных светофильтров значительно лучше. Светофильтр состоит из двух тончайших полупрозрачных слоев серебра, между которыми находится слой диэлектрика. В результате интерференции света в проходящем пучке остаются лучи с длиной волны, равной удвоенной толщине диэлектрического слоя. Прозрачность интерференционных светофильтров составляет Т = 0,3...0,8. Эффективная ширина пропускания обычно не превышает 5...10 нм. Для еще большего сужения полос пропускания иногда пользуются системой двух последовательных интерференционных светофильтров.

Наиболее универсальными монохроматизаторами являются призмы, изготовленные из кварца, стекла и некоторых других материалов. Для инфракрасной спектроскопии используют призмы из LiF, NaCI, KBr и других галогенидов щелочных и щелочноземельных металлов. Эти же материалы применяют для изготовления кювет. Призмы позволяют получать свет высокой монохроматичности в широкой области длин волн.

Тела, излучающие свет, называются источниками света. Раздел оптики, изучающий методы и приемы измерения действия видимого света на глаз человека, называется фотометрией.

Световой поток – величина, равная световой энергии (оцениваемой по зрительному ощущению), проходящей через заданную поверхность за единицу времени: где W – количество световой энергии, проходящей через заданную поверхность за время t. Единицей светового потока в СИ является люмен (лм).

Часть пространства, ограниченная конической поверхностью, называется телесным углом. Этот угол называется центральным телесным углом (рис. 1), если его вершина совмещена с центром сферы.

Телесный угол измеряется отношением, где S – площадь части поверхности сферы радиусом R, на которую опирается данный угол. Единицей измерения телесного угла служит стерадиан (ср). Полный пространственный угол равен ср.

Величина, измеряемая световым потоком, приходящимся на единицу телесного угла по заданному направлению, называется

силой света источника где Ф – световой поток внутри достаточно малого телесного угла w. Сила света в СИ измеряется в канделах (кд).

Точечным источником света называется источник, размеры которого малы по сравнению с расстоянием до места наблюдения и который излучает свет равномерно во всех направлениях.

Полный световой поток от точечного источника света равен.

Освещенностью поверхности называется величина, равная световому потоку, падающему на единицу площади равномерно освещаемой поверхности.

В СИ освещенность измеряется в люксах (лк).

Первый закон освещенности: освещенность поверхности точечным источником прямо пропорциональна силе света источника и обратно пропорциональна квадрату расстояния от источника до освещаемой поверхности:

Второй закон освещенности: освещенность поверхности прямо пропорциональна косинусу угла падения лучей:

Объединенный закон освещенности: освещенность, создаваемая точечным источником света на некоторой площадке, прямо пропорциональна силе света источника и косинусу угла падения лучей и обратно пропорциональна квадрату расстояния до площадки от источника:

Освещенность поверхности, создаваемая несколькими источниками света, равна арифметической сумме освещенностей, создаваемых каждым источником в отдельности.

Светимость определяется отношением светового потока, испускаемого поверхностью, к площади этой поверхности:

Единицей измерения светимости в СИ служит люкс. Если светимость тела обусловлена его освещенностью, то M = kE, где k – коэффициент отражения.

Яркостью светящейся поверхности в направлении наблюдения называется величина, равная отношению силы света к площади проекции этой поверхности на плоскость, перпендикулярную к этому направлению:

где – угол между нормалью к поверхности и направлением наблюдения. Яркость в СИ измеряется в нитах (нт).

Приборы, служащие для определения силы света одного источника на основании сравнения с силой света источника- эталона, называются фотометрами. Фотометры, приспособленные для непосредственного измерения освещенности, называются люксметрами.

Зависимость между оптической плотностью и толщиной слоя, выражаемая уравнением (9), называется законом Бугера – Ламберта. Зависимость (8) можно также вывести из величины поглощения в бесконечно малом слое, интегрированием на всю толщину кюветы. Для этого, аналогично сказанному выше, рассмотрим поглощение монохроматического света телом с параллельными стенками. Бесконечно тонкий слой поглощает долю энергии входящего в него параллельного монохроматического пучка света, пропорциональную толщине слоя db. Тогда относительное уменьшение интенсивности светового потока пропорционально толщине слоя db, через который прошёл световой поток:

где k – коэффициент, характеризующий поглощение света данным телом и зависящий от свойств данного тела. Этот коэффициент в широких пределах не зависит от интенсивности светового потока, только при очень больших её значениях k перестаёт быть постоянным и наблюдается зависимость k от I, т.е. возникает нелинейность поглощения и k перестаёт быть пропорциональным I. Проинтегрировав уравнение (10), получим:

Логарифмируя уравнение (10), получим:

остоянный коэффициент k аналогичен величине lg n из уравнения (9), т.е. k=lg n.

Из рассматриваемого закона вытекает:

отношение интенсивности светового потока, прошедшего через слой раствора, к интенсивности падающего светового потока не зависит от абсолютной интенсивности падающего светового потока;

если толщина слоя раствора увеличивается в арифметической прогрессии, интенсивность светового потока, прошедшего через него, уменьшается в геометрической прогрессии.

Моно­хроматизация света может быть осуществлена при помощи:
1) светофильтров;
2) призм;
3) дифракционных решеток.
Светофильтра­ми называются среды, способные пропускать лишь определенные области спектра. Обычно в фотоколориметрах используются в качестве светофильтров стекла.

.Гравимертический фактор (фактор пересчета)-выражение и физический смысл

Гравиметрический фактор (или фактор пересчета ) – это отношение молярной массы определяемого компонента к молярной массе гравиметрической формы с учетом стехиометрических коэффициентов и обозначают буквой F.

Например,

2Al 3+ ®2Al(OH) 3 ®Al 2 O 3

Гравиметрический фактор рассчитывается по данной формуле или берется в справочнике

Результат гравиметрического анализа рассчитывают по формуле

где х – масса определяемого вещества; m – масса гравиметрической формы; М (х ) и М (г.ф.) – соответственно молярные массы определяемого вещества и гравиметрической формы (г/моль).Отношение М (х )/М(г.ф.) = F называют гравиметрическим фактором (гравиметрическим множителем) или фактором пересчета. Следовательно,

При вычислении гравиметрического фактора необходимо учитывать стехиометрические коэффициенты в химических формулах определяемого вещества и гравиметрической формы, чтобы число атомов определяемого компонента в числителе и знаменателе дроби было одинаковым:

Например, если определяемым веществом является Fe 3 O 4 , а гравиметрической формой Fe 2 O 3 , гравиметрический фактор будет равен

.

Числовые значения факторов пересчета для большинства практически важных определений рассчитаны с высокой точностью и приведены в справочниках.

.Графическая зависимость коэффициента рефракции от концентрации


Влияние температуры на показатель преломления определяется двумя факторами: изменением количества частиц жидкости в единице объема и зависимостью поляризуемости молекул от температуры. Второй фактор становится существенным лишь при очень большом изменении температуры.

Температурный коэффициент показателя преломления пропорционален температурному коэффициенту плотности. Поскольку все жидкости при нагревании расширяются, то их показатели преломления уменьшаются при повышении температуры. Температурный коэффициент зависит от величины температуры жидкости, но в небольших температурных интервалах может считаться постоянным.

Для подавляющего большинства жидкостей температурный коэффициент лежит в узких пределах от –0,0004 до –0,0006 1/град. Важным исключением является вода и разбавленные водные растворы (–0,0001), глицерин (–0,0002), гликоль (–0,00026).

Линейная экстраполяция показателя преломления допустима на небольшие разности температур (10 – 20 °C). Точное определение показателя преломления в широких температурных интервалах производится по эмпирическим формулам вида: nt=n0+at+bt2+…

Давление влияет на показатель преломления жидкостей значительно меньше, чем температура. При изменении давления на 1 атм. изменение n составляет для воды 1,48·10 −5 , для спирта 3,95·10 −5 , для бензола 4,8·10 −5 . То есть изменение температуры на 1 °C влияет на показатель преломления жидкости примерно также, как изменение давления на 10 атм.

Обычно n жидких и твердых тел рефрактометрией определяют с точностью до 0,0001 на рефрактометрах, в которых измеряют предельные углы полного внутреннего отражения. Наиболее распространены рефрактометры Аббе с призменными блоками и компенсаторами дисперсии, позволяющие определять в "белом" свете по шкале или цифровому индикатору. Максимальная точность абсолютных измерений (10·10 −10) достигается на гониометрах с помощью методов отклонения лучей призмой из исследуемого материала. Для измерения n газов наиболее удобны интерференционные методы. Интерферометры используют также для точного (до 10 ·10 −7) определения разностей n растворов. Для этой же цели служат дифференциальные рефрактометры, основанные на отклонении лучей системой двух-трех полых призм.

Автоматические рефрактометры для непрерывной регистрации n в потоках жидкостей используют на производствах при контроле технологических процессов и автоматическом управлении ими, а также в лабораториях для контроля ректификации и как универсальные детекторы жидкостных хроматографов.

Рефрактометрия, выполняющаяся с помощью рефрактометров, является одним из распространённых методов идентификации химических соединений, количественного и структурного анализа, определения физико-химических параметров веществ.

Зависимость показателя преломления водных растворов некоторых веществ от концентрации:

рефрактометрия лекарственная форма аптека


Chromatos - цвет), электромагнитная волна одной определенной и строго постоянной частоты из диапазона частот, непосредственно воспринимаемых человеческим глазом (см. Свет). Происхождение термина «М. с.» связано с тем, что различие в частоте световых волн воспринимается человеком как различие в цвете. Однако по своей физической природе электромагнитные волны видимого диапазона не отличаются от волн др. диапазонов (инфракрасного, ультрафиолетового, рентгеновского и т. д.), и по отношению к ним также используют термин «монохроматический» («одноцветный»), хотя никакого ощущения цвета эти волны не дают. Понятие «М. с.» (как и «монохроматическое излучение» вообще) является идеализацией. Теоретический анализ показывает, что испускание строго монохроматической волны должно продолжаться бесконечно долго. Реальные же процессы излучения ограничены во времени, и поэтому в них одновременно испускаются волны всех частот, принадлежащих некоторому интервалу. Чем уже этот интервал , тем «монохроматичнее» излучение . Так, очень близко к . . излучение отдельных линий спектров испускания свободных атомов (например, атомов газа). Каждая из таких линий соответствует переходу атома из состояния m (с большей энергией) в состояние n (с меньшей энергией). Если бы энергии этих состояний имели строго фиксированные значения Em и En, атом излучал бы М. С. частоты nmn = 2pwmn = (Em - En)/h (см. Излучение). Здесь h - Планка постоянная, равная 6,624 ?10-27 эрг ?сек. Однако в состояниях с большей энергией атом может находиться лишь малое время Dt (обычно 10-8 сек - т. . время жизни на энергетическом уровне), , согласно неопределенностей соотношению для энергии и времени жизни квантового состояния (DЕDt ? h), энергия , например, состояния m может иметь любое значение между Em + DE и Em - DЕ. За счет этого излучение каждой линии спектра приобретает «разброс» частот Dnmn = 2DЕ/h = 2/Dt (подробнее см. Ширина спектральных линий). При испускании света (или электромагнитного излучения др. диапазонов) реальными источниками в них происходит множество переходов между различными энергетическими состояниями; поэтому в таком излучении присутствуют волны многих частот. Приборы, с помощью которых из света выделяют узкие спектральные интервалы (излучение, близкое к М. с.), называют монохроматорами. Чрезвычайно высокая монохроматичность характерна для излучения некоторых типов лазеров (его спектральный интервал может быть значительно уже, чем у линий атомных спектров). Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Калитеевский Н. И., Волновая оптика , М., 1971. . Н. Каперский.

Монохроматическое излучение Монохроматическое излучение, электромагнитное излучение (электромагнитная волна) одной определенной частоты. Подробнее см. Монохроматический свет.

Узкий участок спектра при помощи спектральных приборов (монохроматоров, светофильтров и др.). Свет высокой степени монохроматичности излучают лазеры, а также свободные атомы.

Большой Энциклопедический словарь . 2000 .

Смотреть что такое "МОНОХРОМАТИЧЕСКИЙ СВЕТ" в других словарях:

    Монохроматическое излучение в диапазоне частот, непосредственно воспринимаемых человеч. глазом (см. СВЕТ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    МОНОХРОМАТИЧЕСКИЙ СВЕТ - одноцветное излучение, характеризующееся одной определённой частотой колебаний световых волн; к монохроматическому близки излучения (см.) и (см.) … Большая политехническая энциклопедия

    Световые колебания одной частоты. Свет, близкий к монохроматическому свету, получают, выделяя спектральную линию или узкий участок спектра при помощи спектральных приборов (монохроматоров, светофильтров и др.). Свет высокой степени… … Энциклопедический словарь

    монохроматический свет - vienspalvė šviesa statusas T sritis Standartizacija ir metrologija apibrėžtis Tik tam tikro bangos ilgio šviesa. atitikmenys: angl. monochromatic light vok. einfarbiges Licht, n; monochromatisches Licht, n rus. монохроматический свет, m pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    монохроматический свет - monochromatinė šviesa statusas T sritis chemija apibrėžtis Tik tam tikro bangos ilgio šviesa. atitikmenys: angl. monochromatic light rus. монохроматический свет ryšiai: sinonimas – vienspalvė šviesa … Chemijos terminų aiškinamasis žodynas

    монохроматический свет - monochromatinė šviesa statusas T sritis fizika atitikmenys: angl. monochromatic light vok. monochromatisches Licht, n rus. монохроматический свет, m pranc. lumière monochromatique, f; lumière simple, f … Fizikos terminų žodynas

    - (от Моно... и греч. chrōma, родительный падеж chromatos цвет) электромагнитная волна одной определённой и строго постоянной частоты из диапазона частот, непосредственно воспринимаемых человеческим глазом (см. Свет). Происхождение термина… … Большая советская энциклопедия

    Световые колебания одной частоты. Свет, близкий к М.с., получают, выделяя спектральную линию или узкий участок спектра при помощи спектральных приборов (монохроматоров, светофильтров и др.). Свет высокой степени монохроматичности излучают лазеры … Естествознание. Энциклопедический словарь

    монохроматический свет - (от греч. monos – один и chromatos – цвет) – электромагнитная волна одной, строго постоянной частоты из диапазона частот, воспринимаемых человеческим глазом … Энциклопедический словарь по психологии и педагогике

    МОНОХРОМАТИЧЕСКИЙ, при описании ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ такой свет, который имеет одну длину волны или частоту (один цвет). Чистое монохроматическое излучение невозможно, хотя свет из ЛАЗЕРА занимает очень узкую полосу длин волн и фактически… … Научно-технический энциклопедический словарь