Площадь боковой по цилиндра и конуса. Тела и поверхности вращения

\[{\Large{\text{Цилиндр}}}\]

Рассмотрим окружность \(C\) с центром \(O\) радиуса \(R\) на плоскости \(\alpha\) . Через каждую точку окружности \(C\) проведем прямую перпендикулярно плоскости \(\alpha\) . Поверхность, образованная этими прямыми, называется цилиндрической поверхностью .
Сами прямые называются образующими данной поверхности.

Проведем теперь через некоторую точку некоторой образующей плоскость \(\beta\parallel \alpha\) . Множество точек, по которым образующие пересекут плоскость \(\beta\) , образует окружность \(C"\) , равную окружности \(C\) .
Часть пространства, ограниченная двумя кругами \(K\) и \(K"\) с границами \(C\) и \(C"\) соответственно, а также частью цилиндрической поверхности, заключенной между плоскостями \(\alpha\) и \(\beta\) , называется цилиндром .

Круги \(K\) и \(K"\) называются основаниями цилиндра; отрезки образующих, заключенных между плоскостями, – образующими цилиндра; часть цилиндрической поверхности, образованная ими, - боковой поверхностью цилиндра. Отрезок, соединяющий центры оснований цилиндра равен образующей цилиндра и равен высоте цилиндра (\(l=h\) ).

Теорема

Площадь боковой поверхности цилиндра равна \

где \(R\) – радиус основания цилиндра, \(h\) – высота (образующая).

Теорема

Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей обоих оснований \

Теорема

Объем цилиндра вычисляется по формуле \

\[{\Large{\text{Конус}}}\]

Рассмотрим плоскость \(\alpha\) и на ней окружность \(C\) с центром \(O\) и радиусом \(R\) . Через точку \(O\) проведем прямую, перпендикулярную плоскости \(\alpha\) . Отметим на этой прямой некоторую точку \(P\) . Поверхность, образованная всеми прямыми, проходящими через точку \(P\) и каждую точку окружности \(C\) , называется конической поверхностью , а эти прямые – образующими конической поверхности. Часть пространства, ограниченная кругом с границей \(C\) и отрезками образующих, заключенными между точкой \(P\) и точкой на окружности, называется конусом . Отрезки \(PA\) , где \(A\in \text{окр. } C\) , называются образующими конуса ; точка \(P\) – вершина конуса; круг с границей \(C\) – основание конуса; отрезок \(PO\) – высота конуса.


Замечание

Заметим, что у конуса высота и образующая не равны друг другу, как было в случае с цилиндром.

Теорема

Площадь боковой поверхности конуса равна \

где \(R\) – радиус основания конуса, \(l\) – образующая.

Теорема

Площадь полной поверхности конуса равна сумме площади боковой поверхности и площадей основания \

Теорема

Объем конуса вычисляется по формуле \

Замечание

Заметим, что цилиндр в каком-то смысле является призмой, только в основании находится не многоугольник (как у призмы), а круг.
Формула объема цилиндра такая же, как и формула объема призмы: произведение площади основания на высоту.

Аналогично конус в каком-то смысле является пирамидой. Поэтому формула объема конуса такая же, как и у пирамиды: треть площади основания на высоту.

\[{\Large{\text{Сфера и шар}}}\]

Рассмотрим множество точек пространства, равноудаленных от некоторой точки \(O\) на расстояние \(R\) . Это множество называется сферой с центром в точке \(O\) радиуса \(R\) .
Отрезок, соединяющий две точки сферы и проходящий через ее центр называется диаметром сферы.

Сфера вместе со своей внутренностью называется шаром .


Теорема

Площадь сферы вычисляется по формуле \

Теорема

Объем шара вычисляется по формуле \

Определение

Шаровой сегмент – это часть шара, отсекаемая от него некоторой плоскостью.
Пусть плоскость пересекла шар по кругу \(K\) с центром в точке \(Q\) . Соединим точки \(O\) (центр шара) и \(Q\) и продлим этот отрезок до пересечения со сферой – получим радиус \(OP\) . Тогда отрезок \(QP\) называется высотой сегмента.


Теорема

Пусть \(R\) – радиус шара, \(h\) – высота сегмента, то объем шарового сегмента равен \

Определение

Шаровой слой – это часть шара, заключенная между двумя параллельными плоскостями, пересекающими этот шар. Круги, по которым плоскости пересекают шар, называются основаниями шарового слоя, отрезок, соединяющий центры оснований – высотой шарового слоя.
Две оставшиеся части шара являются в этом случае шаровыми сегментами.

Объем шарового слоя равен разности объема шара и объемов шаровых сегментов с высотами \(AP\) и \(BT\) .

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

1. Объем конуса равен 16.Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.

Очевидно, что объем меньшего конуса в 8 раз меньше объема большого и равен двум.

Для решения некоторых задач полезны начальные знания стереометрии. Например - что такое правильная пирамида или прямая призма. Полезно помнить, что у цилиндра, конуса и шара есть еще общее название - тела вращения. Что сферой называется поверхность шара. А, например, фраза «образующая конуса наклонена к плоскости основания под углом 30 градусов предполагает, что вы знаете, что такое угол между прямой и плоскостью. Вам также может пригодиться теорема Пифагора и простые формулы площадей фигур.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, - снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Всё просто - рисуем вид снизу. Видим, что радиус большего круга в раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в 2 раза больше.

Упражнения для самостоятельной работы.

1.Измерение прямоугольного параллелепипеда 15, 50 и 36 м. Найти ребро равновеликого ему куба.

2.В правильной 4-угольной пирамиде высота 3 см, боковое ребро 5 см. Найти объем пирамиды.

3.Осевое сечение цилиндра – прямоугольник со сторонами 8 дм и 12 дм. Найти объем цилиндра.

4.Образующая конуса наклонена к плоскости основания под углом 30°, радиус основания равен 3 дм. Найти объем конуса.

5.Радиус шара равен 4 м. Найти объем шарового сегмента высотой, равной 3 м.

Список литературы

Геометрия, 10-11: Учеб. для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С. Б. Кадомцев и др.-Москва: Просвещение, 2009 год

2. Ершова А.П., Голобородько В.В., Ершова А.С. Самостоятельные и контрольные работы по геометрии для 10 класса.- 4-е издание, испр. и доп.- М.:Илекса, 2007,- 175 с.

3. Геометрия. 10-11 классы: тесты для текущего и обобщающего контроля/авт.сост.Г.И.Ковалёва, Н.И.Мазурова.- Волгоград: Учитель, 2009, 187 стр.

4. Виртуальная школа Кирилла и Мефодия. Репетитор по математике. Москва. 2007 год

5. Учебное электронное издание. Математика 5- 11 класссы. Практикум. Под редакцией Дубровского В.Н., 2004.

ПРАКТИЧЕСКАЯ РАБОТА № 16

«Использование координат и векторов при решении математических задач»

Цель урока:

1) Обобщить теоретические знания по теме: «Использование координат и векторов при решении математических задач».

2) Рассмотреть алгоритмы решений заданий теме «Использование координат и векторов при решении математических задач», решить задачи.

3) Формировать потребность к самопознанию, самоконтролю, достижению поставленных целей.

Теоретический материал


Похожая информация:

  1. F. Новый максимум цен сопровождается увеличением объема, аналогично точке А. Продолжайте удерживать позицию на повышение

Тела вращения, изучаемые в школе, - это цилиндр, конус и шар.

Если в задаче на ЕГЭ по математике вам надо посчитать объем конуса или площадь сферы - считайте, что повезло.

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, - снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Всё просто - рисуем вид снизу. Видим, что радиус большего круга в раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в раза больше.

Еще один важный момент. Помним, что в задачах части В вариантов ЕГЭ по математике ответ записывается в виде целого числа или конечной десятичной дроби. Поэтому никаких или у вас в ответе в части В быть не должно. Подставлять приближенное значение числа тоже не нужно! Оно обязательно должно сократиться!. Именно для этого в некоторых задачах задание формулируется, например, так: «Найдите площадь боковой поверхности цилиндра, деленную на ».

А где же еще применяются формулы объема и площади поверхности тел вращения? Конечно же, в задаче С2 (16). Мы тоже расскажем о ней.

Цели урока:

  • Образовательная: формирование знаний о формулах площадей поверхности цилиндра и конуса, умение применять их для решения задач, а также показать применение данных формул в практических ситуациях и на производстве.
  • Воспитательная: развивать заинтересованность изучения математики, раскрывая практическую значимость изучаемого материала.
  • Развивающая: формирование умений распознавать геометрические модели тел, применять математические знания в практических ситуациях, описанных условием задач.

Тип занятия: сообщение новых знаний.

Методы обучения: устный и практический контроль знаний.

Оборудование: плакаты, карточки для учащихся, карточки для лабораторно-практической работы, компьютер.

ХОД УРОКА

1. Организационный момент (1минута).

2. Сообщение целей и темы занятия , мотивация учебной деятельности (3 минуты). Учащиеся с помощью преподавателя формулируют тему и цель занятия. Преподаватель записывает тему на доске, учащиеся в тетрадях.

3. Актуализация знаний проводится по вариантам (1вариант – цилиндр, 2вариант – конус) (7-8 минут)(см. ниже).

4. Сообщение новых знаний (10 минут).

4. 1. Вывод формулы площади поверхности цилиндра.

Плакат 1. – Цилиндр вписан и описан в 4-х-ую призму.

Плакат 2. - Цилиндр вписан и описан в 6-х-ую призму.

Вывод: Если будем увеличивать количество граней призмы, то поверхность цилиндра будет максимально приближаться к граням призмы и на каком–то n – шаге произойдет совпадение поверхности цилиндра с призмой, т.е. совпадут их площади поверхностей.

Площадь поверхности призмы:

Sпов= Sбок+2 Sосн

Sбок= РоснН (слайд2)

Площадь поверхности цилиндра:

Sосн=ПR2 Сдлина окружности=2ПR

Sпов=2ПRН+2ПR2 (слайд3)

Вывод формулы площади поверхности конуса.

Плакат 3. - Конус вписан и описан в 4-х-ую пирамиду.

Плакат 4. - Конус вписан и описан в 6-х-ую пирамиду.

Вывод: Если будем увеличивать количество граней пирамиды, то поверхность конуса будет максимально приближаться к граням пирамиды и на каком–то n – шаге произойдет совпадение поверхности конуса с пирамидой, т.е. совпадут их площади поверхностей.

Площадь поверхности пирамиды:

Sпов= Sбок+ Sосн

Sбок=1/2РоснL (слайд4)

Площадь поверхности конуса:

Sпов=ПRL+ПR 2 (слайд5)

5. Первичное осмысление и применение изучаемого материала (15 минут).

Задача 1. Пусть S-площадь боковой поверхности цилиндра, D-диаметр основания, Н-высота, заполните пустые ячейки.

S(см 2) D(см) Н(см)
1 12 5
2 100П 25
3 225П 15

Задача 2. Пусть S-площадь боковой поверхности конуса, R-радиус основания, L-образующая конуса, заполните пустые ячейки.

S(см 2) R(см) L(см)
1 2√2 √2
2 60П 0,4
3 30П √3

Задача 3. Тело имеет форму цилиндра с коническим верхом. Радиус его основания 2м, высота 4м, причем цилиндрическая часть имеет высоту 2,5м. Определить полную поверхность тела.

6. Историческая справка (сообщение учащихся) (8 минут).

7. Домашнее задание (1-2 минуты) по сборнику

На «3» В-4(7) стр. 81, В-11(7) стр. 83

На «4» В-16(7) стр 85, В-19(7) стр. 86

На «5» 3.72, 3.78 стр. 121

8. Лабораторно-практическая работа (30 минут) (см. Приложение 1 )

9. Итог занятия (1-2 минуты)

Список литературы

  1. Алёшина Т.Н. Урок математики.- М., «Высшая школа», 1991г.
  2. Беденко Н.К. Уроки геометрии.- М., «Высшая школа», 1988г.
  3. Денищева Л.О. и др. Зачеты в системе дифференцированного обучения математике.- М.: Просвещение, 1993 .
  4. Дорофеев Г.В. Сборник заданий для подготовки и проведения письменного экзамена за курс средней школы. - М.: Дрофа, 2009.
  5. Дубинчук Е.Е. Обучение геометрии в профессиональных училищах.- М., «Высшая школа», 1989.
  6. Овсянник Д.П. Практикум по математике в профессиональных училищах металлообрабатывающего профиля. – Ульяновск, 1997.

Литература для учащихся

  1. Глейзер История математики в школе.- М.: Просвещение,1964.
  2. Энциклопедия для детей «Математика».- М.: «Аванта», 2002.

Цели урока:

Образовательные: ввести понятия цилиндра, конуса и шара, познакомить учащихся с формулами нахождения площадей тел вращения, сформировать умения применять формулы (полученные знания) при решении задач на цилиндр, конус и шар;

Воспитательные: воспитание внимательности у учащихся.

Развивающие: развитие пространственного воображения, логического мышления, культуры устной математической речи.

План урока:

  1. Организационный момент;
  2. Объяснение нового материала;
  3. Закрепление нового материала;
  4. Постановка домашнего задания и подведение итогов урока.

Оборудование: Компьютер, проектор, экран.

Ход урока

I. Организационный момент.

II. Объяснение нового материала.

Сегодня на уроке мы познакомимся с новыми для вас понятиями: понятием цилиндра, конуса и сферы, площадями боковых поверхностей данных тел и рассмотрим сечения цилиндра и конуса различными плоскостями, а также взаимное расположение сферы и плоскости.

1. Начнем мы с понятия цилиндра .

Рассмотрим две параллельные плоскости и и окружность L с центром в точке O радиуса r, расположенную в плоскости (слайд 2). Через каждую точку окружности L проведем прямую, перпендикулярную к плоскости .

Отрезки этих прямых, заключенные между плоскостям и , образуют цилиндрическую поверхность . Сами отрезки называются образующими цилиндрической поверхности.

Тело, ограниченное цилиндрической поверхностью и двумя кругами с границами L и L 1 , называется цилиндром (слайд 2).

Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра .

Образующие цилиндрической поверхности называются образующими цилиндра , прямая OO 1 – осью цилиндра .

Все образующие цилиндра параллельны и равны друг другу. Почему? (как отрезки параллельных прямых, заключенные между параллельными плоскостями).

Длина образующей называется высотой цилиндра, а радиус основания – радиусом цилиндра.

Ребята, давайте изобразим в своих тетрадях цилиндр и запишем его определение.

Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон (слайд 2).

Теперь давайте найдем площадь полной поверхности конуса. Какие будут предложения? (площадь полной поверхности конуса равна сумме площадей боковой поверхности и основания) Чему равна площадь основания конуса? () А площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую, т.е. (пояснить). Тогда получаем, что .

Об усеченном конусе вы прочтете дома (стр.125) и сделаете конспект данного пункта.

3. Понятие сфера и шар .

- Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки (слайд 6).

Данная точка называется центром сферы, а данное расстояние – радиусом сферы. Отрезок, соединяющий две точки сферы и проходящей через ее центр, называется диаметром сферы.

Сфера может быть получена вращением полуокружности вокруг ее диаметра (слайд 6).

Тело, ограниченное сферой, называется шаром . Центр, радиус и диаметр сферы называются также центром, радиусом и сферой шара.

А теперь, ребята, давайте выведем уравнение сферы радиуса R с центром в точке C(x 0 , y 0 , z 0) . Изображаем в тетрадях рисунок такой же как у меня (слайд 7).

Расстояние от произвольной точки M (x, y, z) до точки C вычисляется по формуле . Если точка M лежит на данной сфере, то или , т.е. координаты точки M удовлетворяют уравнению .

Если же точка M (x, y, z) не лежит на данной сфере, то , т.е. координаты точки M не удовлетворяют уравнению. Следовательно, в прямоугольной системе координат уравнение сферы радиуса R с центром в точке C(x 0 , y 0 , z 0) имеет вид . Запишем это себе в тетрадь. У кого есть вопросы?

Рассмотрим сечения цилиндра различными плоскостями . Если секущая плоскость проходит через ось цилиндра, то сечение представляет собой прямоугольник, две стороны которого – образующие, а две другие – диаметры оснований цилиндра (слайд 8). Такое сечение называется осевым .

Если секущая плоскость перпендикулярна к оси цилиндра, то сечение является кругом (слайд 8). Изображаем у себя в тетрадях.

Рассмотрим сечения конуса различными плоскостями . Если секущая плоскость проходит через ось конуса, то сечение представляет собой равнобедренный треугольник (почему?) , основание которого – диаметр основания конуса, а боковые стороны – образующие конуса. Такое сечение называется осевым .

Если секущая плоскость перпендикулярна к оси конуса, то сечение представляет собой круг, расположенным на оси конуса. Изображаем у себя в тетрадях сечения конуса. Давайте сверим рисунки, посмотрите на экран (слайд 8).

О взаимном расположении сферы и плоскости вы узнаете самостоятельно, сейчас поговорим о касательной плоскости к сфере.

Записываем определение: плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере , а их общая точка называется точкой касания плоскости и сферы (слайд 10).

Касательная плоскость к сфере обладает следующим свойством:

Теорема. Радиус сферы, проведенный в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

Доказательство.

Вернемся к нашему рисунку. Докажем, что радиус перпендикулярен к плоскости .

Предположим, что это не так. Тогда радиус является наклонной к плоскости , и, следовательно, расстояние от центра сферы до плоскости меньше радиуса сферы. Поэтому сфера и плоскость пересекаются по окружности. Но это противоречит тому, что плоскость – касательная, т.е. сфера и плоскость имеют только одну общую точку. Полученное противоречие доказывает, что радиус перпендикулярен к плоскости . Теорема доказана.

Верна и обратная теорема . Давайте сформулируем ее вместе (если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере)

Формула для вычисления площади сферы: .

III. Закрепление нового материала.

Задача 539. Сколько понадобится краски, чтобы покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м, если на один квадратный метр расходуется 200 г краски?

Вопросы учителя Ответы учащихся
Что нужно найти? Сколько понадобится краски, чтобы покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м, если на один квадратный метр расходуется 200 г краски?
Как будем находить? Давайте сначала найдем площадь поверхности цилиндра.
Сразу условимся, что бак будет с крышкой. Тогда будем находить площадь полной поверхности цилиндра или боковой поверхности цилиндра? Площадь полной поверхности цилиндра.
А что потом? Полученную площадь умножим на 200 г.
Запишем ответ

Сейчас проверим, как вы усвоили материал. (В зависимости от условий проведения урока тест может быть представлен учащимся в электронном варианте или в печатном.)

Решите тест (печатный вариант) . Я вам сейчас выдам таблицу, в первой строке таблицы записаны номера заданий, во второй строке вы пишете номера правильных ответов.

1 2 3 4 5

IV. Постановка домашнего задания и подведение итогов урока.

Домашнее задание: учебник глава VI (выучить основные определения, теоремы) , задача 541

Итоги: на данном занятии мы познакомились с такими понятиями как цилиндр, конус, шар и сферы (показать