Почему валентность. Урок «Валентность

Рассматривая формулы различных соединений, нетрудно заметить, что число атомов одного и того же элемента в молекулах различных веществ не одинаково. Например, HCl, NH 4 Cl, H 2 S, H 3 PO 4 и т.д. Число атомов водорода в этих соединениях изменяется от 1 до 4. Это характерно не только для водорода.

Как же угадать, какой индекс поставить рядом с обозначением химического элемента? Как составляются формулы вещества? Это легко сделать, когда знаешь валентность элементов, входящих в состав молекулы данного вещества.

это свойство атома данного элемента присоединять, удерживать или замещать в химических реакциях определённое количество атомов другого элемента. За единицу валентности принята валентность атома водорода. Поэтому иногда определение валентности формулируют так: валентность это свойство атома данного элемента присоединять или замещать определённое количество атомов водорода.

Если к одному атому данного элемента прикрепляется один атом водорода, то элемент одновалентен, если два двухвалентен и т.д. Водородные соединения известны не для всех элементов, но почти все элементы образуют соединения с кислородом О. Кислород считается постоянно двухвалентным.

Постоянная валентность:

I H, Na, Li, K, Rb, Cs
II O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
III B, Al, Ga, In

Но как поступить в том случае, если элемент не соединяется с водородом? Тогда валентность необходимого элемента определяют по валентности известного элемента. Чаще всего её находят, используя валентность кислорода, потому что в соединениях его валентность всегда равно 2. Например, не составит труда найти валентность элементов в следующих соединениях: Na 2 O (валентность Na 1, O 2), Al 2 O 3 (валентность Al 3, O 2).

Химическую формулу данного вещества можно составить, только зная валентность элементов. Например, составить формулы таких соединений, как CaO, BaO, CO, просто, потому что число атомов в молекулах одинаково, так как валентности элементов равны.

А если валентности разные? Когда мы действуем в таком случае? Необходимо запомнить следующее правило: в формуле любого химического соединения произведение валентности одного элемента на число его атомов в молекуле равно произведению валентности на число атомов другого элемента. Например, если известно, что валентность Mn в соединении равна 7, а O 2, тогда формула соединения будет выглядеть так Mn 2 O 7.

Как же мы получили формулу?

Рассмотрим алгоритм составления формул по валентности для состоящих из двух химических элементов.

Существует правило, что число валентностей у одного химического элемента равно числу валентностей у другого . Рассмотрим на примере образования молекулы, состоящей из марганца и кислорода.
Будем составлять в соответствии с алгоритмом:

1. Записываем рядом символы химических элементов:

2. Ставим над химическими элементами цифрами их валентности (валентность химического элемента можно найти в таблице периодической системы Менделева, у марганца 7, у кислорода 2.

3. Находим наименьшее общее кратное (наименьшее число, которое делится без остатка на 7 и на 2). Это число 14. Делим его на валентности элементов 14: 7 = 2, 14: 2 = 7, 2 и 7 будут индексами, соответственно у фосфора и кислорода. Подставляем индексы.

Зная валентность одного химического элемента, следуя правилу: валентность одного элемента × число его атомов в молекуле = валентность другого элемента × число атомов этого (другого) элемента, можно определить валентность другого.

Mn 2 O 7 (7 · 2 = 2 · 7).

Понятие о валентности было введено в химию до того, как стало известно строение атома. Сейчас установлено, что это свойство элемента связано с числом внешних электронов. Для многих элементов максимальная валентность вытекает из положения этих элементов в периодической системе.

Остались вопросы? Хотите знать больше о валентности?
Чтобы получить помощь репетитора – .

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

До сих пор вы пользовались химическими формулами веществ, приведенными в учебнике, или теми, которые вам называл учитель. Как же правильно составлять химические формулы?

Химические формулы веществ составляются на основе знания качественного и количественного состава вещества. Веществ существует гигантское количество, естественно запомнить все формулы невозможно. Это и не нужно! Важно знать определенную закономерность, согласно которой атомы способны соединяться друг с другом с образованием новых химических соединений. Такая способность называется валентностью.

Валентность – свойство атомов элементов присоединять определенное число атомов других элементов

Рассмотрим модели молекул некоторых веществ, таких, как вода, метан и углекислый газ.

Видно, что в молекуле воды атом кислорода присоединяет два атома водорода. Следовательно, его валентность равна двум. В молекуле метана атом углерода присоединяет четыре атома водорода, его валентность в данном веществе равна четырем. Валентность водорода в обоих случаях равна одному. Такую же валентность углерод проявляет и в углекислом газе, но в отличие от метана, атом углерода присоединяет два атома кислорода, так как валентность кислорода равна двум.

Существуют элементы, валентность которых не меняется в соединениях. О таких элементах говорят, что они обладают постоянной валентностью. Если же валентность элемента может быть различной – это элементы с переменной валентностью. Валентность некоторых химических элементов приведена в таблице 2. Валентность принято обозначать римскими числами.

Таблица 2. Валентность некоторых химических элементов

Символ элемента Валентность Символ элемента Валентность
H, Li, Na, K, F, Ag I C, Si, Sn, Pb II, IV
Be, Mg, Ca, Ba, Zn, O II N I, II, III, IV
Al, B III P, As, Sb III, V
S II, IV, VI Cl I, II,III, IV,V, VII
Br, I I, III, V Ti II, III, IV

Стоит отметить, что высшая валентность элемента численно совпадает с порядковым номером группы Периодической Системы, в которой он находится. Например, углерод находиться в IV группе, его высшая валентность равна IV.

Исключение составляют три элемента:

  • азот – находится в V группе, но его высшая валентность IV;
  • кислород – находится в VI группе, но его высшая валентность II;
  • фтор – находится в VII группе, но его высшая валентность – I.

Исходя из того, что все элементы расположены в восьми группах Периодической Системы, валентность может принимать значения от I до VIII.

Составление формул веществ при помощи валентности

Для составления формул веществ при помощи валентности воспользуемся определенным алгоритмом:

Определение валентности по формуле вещества

Чтобы определить валентность элементов по формуле вещества, необходим обратный порядок действий. Рассмотрим его также при помощи алгоритма:

При изучении данного параграфа были рассмотрены сложные вещества, в состав которых входят только два вида атомов химических элементов. Формулы более сложных веществ составляются иначе.

Бинарные соединения – соединения, в состав которых входит два вида атомов элементов

Для определения порядка последовательности соединения атомов используют структурные (графические) формулы веществ. В таких формулах валентности элементов обозначают валентными штрихами (черточками). Например, молекулу воды можно изобразить как

Н─О─Н

Графическая формула изображает только порядок соединения атомов, но не структуру молекул. В пространстве такие молекулы могут выглядеть иначе. Так, молекула воды имеет угловую структурную формулу:

  • Валентность – способность атомов элементов присоединять определенное число атомов других химических элементов
  • Существуют элементы с постоянной и переменной валентностью
  • Высшая валентность химического элемента совпадает с его номером группы в Периодической Системе химических элементов Д.И. Менделеева. Исключения: азот, кислород, фтор
  • Бинарные соединения – соединения, в состав которых входит два вида атомов химических элементов
  • Графические формулы отражают порядок связей атомов в молекуле при помощи валентных штрихов
  • Структурная формула отражает реальную форму молекулы в пространстве

Понятие валентность происходит от латинского слова «valentia» и было известно еще в середине XIX века. Первое «пространное» упоминание валентности было еще в работах Дж. Дальтона, который утверждал, что все вещества состоят из атомов, соединенных между собой в определенных пропорциях. Затем, Франкланд ввел само понятие валентности, которое нашло дальнейшее развитие в трудах Кекуле, который говорил о взаимосвязи валентности и химической связи, А.М. Бутлерова, который в своей теории строения органических соединений связывал валентность с реакционной способностью того или иного химического соединения и Д.И. Менделеева (в Периодической системе химических элементов высшая валентность элемента определяется номером группы).

ОПРЕДЕЛЕНИЕ

Валентность – это количество ковалентных связей, которое способен образовывать атом в соединении с ковалентной связью.

Валентность элемента определяется числом неспаренных электронов атоме, поскольку они принимают участие в образовании химической связи между атомами в молекулах соединений.

Основное состояние атома (состояние с минимальной энергией) характеризуется электронной конфигурацией атома, которая соответствует положению элемента в Периодической системе. Возбужденное состояние – это новое энергетическое состояние атома, с новым распределением электронов в пределах валентного уровня.

Электронные конфигурации электронов в атоме можно изобразить не только в виде электронных формул, но и с помощью электронно-графических формул (энергетических, квантовых ячеек). Каждая ячейка обозначает орбиталь, стрелка – электрон, направление стрелки (вверх или вниз) показывает спин электрона, свободная клетка – свободная орбиталь, которую может занимать электрон при возбуждении. Если в ячейке 2 электрона, такие электроны называются спаренными, если электрон 1 – неспаренный. Например:

6 C 1s 2 2s 2 2p 2

Орбитали заполняют следующим образом: сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами. Поскольку на 2p подуровне три орбитали с одинаковой энергией, то каждый из двух электронов занял по одной орбитали. Одна орбиталь осталась свободной.

Определение валентности элемента по электронно-графическим формулам

Валентность элемента можно определить по электронно-графическим формулам электронных конфигураций электронов в атоме. Рассмотрим два атома – азота и фосфора.

7 N 1s 2 2s 2 2p 3

Т.к. валентность элемента определяется числом неспаренных электронов, следовательно, валентность азота равна III. Поскольку у атома азота нет свободных орбиталей, для этого элемента невозможно возбужденное состояние. Однако III, не максимальная валентность азота, максимальная валентность азота V и определяется номером группы. Поэтому, следует запомнить, что с помощью электронно-графических формул не всегда можно определить высшую валентность, а также все валентности, характерные для этого элемента.

15 P 1s 2 2s 2 2p 6 3s 2 3p 3

В основном состоянии атом фосфора имеет 3 неспаренных электрона, следовательно, валентность фосфора равна III. Однако, в атоме фосфора имеются свободные d-орбитали, поэтому электроны, находящиеся на 2s – подуровне способны распариваться и занимать вакантные орбитали d-подуровня, т.е. переходить в возбужденное состояние.

Теперь атом фосфора имеет 5 неспаренных электронов, следовательно для фосфора характерна и валентность, равная V.

Элементы, имеющие несколько значений валентности

Элементы IVA – VIIA групп могут иметь несколько значений валентности, причем, как правило, валентность изменяется ступенчато на 2 единицы. Такое явление обусловлено тем, что в образовании химической связи электроны участвуют попарно.

В отличие от элементов главных подгрупп, элементы В-подгрупп, в большинстве соединений не проявляют высшую валентность, равную номеру группы, например, медь и золото. В целом, переходные элементы проявляют большое разнообразие химических свойств, которое объясняется большим набором валентностей.

Рассмотрим электронно-графические формулы элементов и установим, в связи с чем элементы имеют разные валентности (рис.1).


Задания: определите валентные возможности атомов As и Cl в основном и возбужденном состояниях.

Рассматривая формулы различных соединений, нетрудно заметить, что число атомов одного и того же элемента в молекулах различных веществ не одинаково. Например, HCl, NH 4 Cl, H 2 S, H 3 PO 4 и т.д. Число атомов водорода в этих соединениях изменяется от 1 до 4. Это характерно не только для водорода.

Как же угадать, какой индекс поставить рядом с обозначением химического элемента? Как составляются формулы вещества? Это легко сделать, когда знаешь валентность элементов, входящих в состав молекулы данного вещества.

это свойство атома данного элемента присоединять, удерживать или замещать в химических реакциях определённое количество атомов другого элемента. За единицу валентности принята валентность атома водорода. Поэтому иногда определение валентности формулируют так:валентность это свойство атома данного элемента присоединять или замещать определённое количество атомов водорода.

Если к одному атому данного элемента прикрепляется один атом водорода, то элемент одновалентен, если два двухвалентен и т.д. Водородные соединения известны не для всех элементов, но почти все элементы образуют соединения с кислородом О. Кислород считается постоянно двухвалентным.

Постоянная валентность:

I H, Na, Li, K, Rb, Cs
II O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
III B, Al, Ga, In

Но как поступить в том случае, если элемент не соединяется с водородом? Тогда валентность необходимого элемента определяют по валентности известного элемента. Чаще всего её находят, используя валентность кислорода, потому что в соединениях его валентность всегда равно 2.Например, не составит труда найти валентность элементов в следующих соединениях: Na 2 O (валентность Na 1, O 2), Al 2 O 3 (валентность Al 3, O 2).

Химическую формулу данного вещества можно составить, только зная валентность элементов. Например, составить формулы таких соединений, как CaO, BaO, CO, просто, потому что число атомов в молекулах одинаково, так как валентности элементов равны.

А если валентности разные? Когда мы действуем в таком случае? Необходимо запомнить следующее правило: в формуле любого химического соединения произведение валентности одного элемента на число его атомов в молекуле равно произведению валентности на число атомов другого элемента. Например, если известно, что валентность Mn в соединении равна 7, а O 2, тогда формула соединения будет выглядеть так Mn 2 O 7.

Как же мы получили формулу?

Рассмотрим алгоритм составления формул по валентности для состоящих из двух химических элементов.

Существует правило, что число валентностей у одного химического элемента равно числу валентностей у другого . Рассмотрим на примере образования молекулы, состоящей из марганца и кислорода.
Будем составлять в соответствии с алгоритмом:

1. Записываем рядом символы химических элементов:

Mn O

2. Ставим над химическими элементами цифрами их валентности (валентность химического элемента можно найти в таблице периодической системы Менделева, у марганца 7, у кислорода 2.

3. Находим наименьшее общее кратное (наименьшее число, которое делится без остатка на 7 и на 2). Это число 14. Делим его на валентности элементов 14: 7 = 2, 14: 2 = 7, 2 и 7 будут индексами, соответственно у фосфора и кислорода. Подставляем индексы.

Зная валентность одного химического элемента, следуя правилу: валентность одного элемента × число его атомов в молекуле = валентность другого элемента × число атомов этого (другого) элемента, можно определить валентность другого.

Mn 2 O 7 (7 · 2 = 2 · 7).

2х = 14,

х = 7.

Понятие о валентности было введено в химию до того, как стало известно строение атома. Сейчас установлено, что это свойство элемента связано с числом внешних электронов. Для многих элементов максимальная валентность вытекает из положения этих элементов в периодической системе.

Одной из важных в изучении школьных тем является курс, касающийся валентности. Об этом пойдет речь в статье.

Валентность – что это такое?

Валентность в химии означает свойство атомов химического элемента привязывать к себе атомы другого элемента. В переводе с латыни – сила. Выражается она в числах. Например, валентность водорода всегда будет равняться единице. Если взять формулу воды – Н2О, ее можно представить в виде Н – О – Н. Один атом кислорода смог связать с собой два атома водорода. Значит, количество связей, которые создает кислород, равно двум. И валентность этого элемента будет равняться двум.

В свою очередь, водород будет двухвалентным. Его атом может быть соединен только с одним атомом химического элемента. В данном случае с кислородом. Говоря точнее, атомы в зависимости от валентности элемента, образуют пары электронов. Сколько таких пар образовано – таковой и будет валентность. Числовое значение именуется индексом. У кислорода индекс 2.

Как определить валентность химических элементов по таблице Дмитрия Менделеева

Посмотрев на таблицу элементов Менделеева, можно заметить вертикальные ряды. Их называют группами элементов. От группы зависит и валентность. Элементы первой группы имеют первую валентность. Второй – вторую. Третьей – третью. И так далее.

Есть также элементы с постоянным индексом валентности. Например, водород, группа галогенов, серебро и так далее. Их необходимо выучить обязательно.


Как определить валентность химических элементов по формулам?

Иногда сложно определить по таблице Менделеева валентность. Тогда нужно смотреть конкретную химическую формулу. Возьмем оксид FeO. Здесь и у железа, как у кислорода, индекс валентности будет равняться двум. А вот в оксиде Fe2O3 – по-другому. Железо будет трехвалентным.


Нужно помнить всегда разные способы определения валентности и не забывать их. Знать постоянные ее числовые значения. У каких элементов они есть. И, конечно, пользоваться таблицей химических элементов. А также изучать отдельные химические формулы. Лучше представлять их в схематическом виде: Н – О – Н, например. Тогда видны связи. И количество черточек (тире) будет числовым значением валентности.