Порфирии биохимия. Порфирины

Серповидно-клеточная анемия

HbS – гемоглобин серповидно-клеточной анемии. При этом нарушении в ДНК в результате точковой мутации триплет ЦТТ заменен на триплет ЦАТ , что влечет за собой включение в 6-м положении β-цепи вместо глутамата аминокислоты валина . Изменение свойств β-цепи влечет изменение свойств всей молекулы и формирование на поверхности гемоглобина "липкого" участка. При дезоксигенации гемоглобина участок "раскрывается" и связывает одну молекулу дезоксигемоглобина S с другими подобными. Результатом является полимеризация гемоглобиновых молекул и образование крупных белковых тяжей, вызывающих деформацию эритроцитов и, при прохождении ими капилляров, гемолиз.

Схема отличия гемоглобина S от гемоглобина А и его полимеризация

Нарушение синтеза гемоглобина

Порфирии

Порфирии – это группа гетерогенных наследственных заболеваний, возникающих в результате нарушения синтеза гема и повышения содержания порфиринов и их предшественников в организме. Выделяют наследственные и приобретенные формы порфирии.

Приобретенные формы порфирий носят токсический характер и вызываются действием гексахлорбензола, солей свинца и других тяжелых металлов (ингибирование порфобилиногенсинтазы, феррохелатазы и др.), лекарственными препаратами (антигрибковый антибиотик гризеофульфин).

При наследственных формах дефект фермента имеется во всех клетках организма, но проявляется только в одном типе клеток. Можно выделить две большие группы порфирий:

1. Печеночные – группа заболеваний с аутосомно-доминантными нарушениями ферментов различных этапов синтеза протопорфирина IX .

Наиболее ярким заболеванием этой группы является перемежающаяся острая порфирия , при которой у гетерозигот активность уропорфириноген-I-синтазы снижена на 50%. В результате больные экскретируют с мочой большие количества порфобилиногена и аминолевулиновой кислоты. На свету порфобилиноген окисляется в окрашенные соединения и моча темнеет. Симптомами заболевания являются острые боли в животе, нервно-психические расстройства (полиневриты, тетрапарез, галлюцинации), сердечно-сосудистые нарушения.

Заболевание проявляется после достижения половой зрелости из-за повышенной потребности гепатоцитов в цитохроме Р450 для обезвреживания половых стероидов, обострение состояния также часто бывает после приема лекарственных препаратов, метаболизм которых требует участия цитохрома Р450 . Снижение концентрации гема, используемого для синтеза цитохрома Р450 , активирует аминолевулинат синтазу .

2. Эритропоэтические – аутосомно-рецессивные нарушения некоторых ферментов синтеза протопорфирина IX в эритроидных клетках. При этом при синтезе уропорфириногенов

Болезни связанные с нарушением синтеза гема и зачастую проявляющиеся анемией, кожной сенсибилзацией и различными неврологическими расстройствами. Один из первых случаев описан Schultz в 19-м веке - 1874 г..

Идентифицированы различные типы порфирии , каждый из которых связан с дефектом одного из восьми ферментов, участвующих в синтезе гема (кроме 5-аминолевулинатсинтетазы). Определены гены, кодирующие эти ферменты, и их хромосомная локализация. Во многом известны молекулярные повреждения, лежащие в основе различных типов заболевания.

Схема биосинтеза гема
АЛК - 5-аминолевулиновая кислота, ПБГ - порфобилиноген, УПГ - уропорфириноген, КПГ - копропорфириноген, ППГ - протопорфириноген

Биосинтетический блок , возникающий вследствие ферментативных дефектов, наиболее сильно проявляется в печени и костном мозге - органах, в которых синтезируется основное количество гема. Для каждого типа порфирии характерны клинические и патоморфологические особенности, отражающие дефект определенного фермента и тип наследования.

В целом для порфирии характерны два основных клинических синдрома: кожная фотосенсибилизация и синдром неврологических расстройств. Фотосенсибилизация кожи - результат реакции откладывающихся в коже порфиринов на солнечное облучение. Неврологические расстройства обусловлены повышенной продукцией и экскрецией порфириновых предшественников АЛК и порфобилиногена. При дефектах двух и более ферментов, участвующих в синтезе гема, диагностируется двойная порфирия.

Генетические и метаболические нарушения при порфириях
Примечание. 1) * - процент от значения нормальной активности фермента; 2) основной метаболит и путь экскреции выделены жирным шрифтом; 3) сокращения: АЛК - 5-аминолевулиновая кислота, ПБГ - порфобилиноген, УПГ - уропорфириноген, КПГ - копропорфириноген, ППГ - протопорфириноген.

Классификация порфирий

I. Порфирии с кожной фотосенсибилизацией :
- Врожденная эритропоэтическая порфирия
- Поздняя кожная порфирия
- Протопорфирия

II. Острые или индуцированные порфирии :
- Порфирии с неврологическими проявлениями
- Острая перемежающаяся порфирия
- АЛК-Д порфирия
- Порфирии с неврологическими и кожными проявлениями
- Вариегатная порфирия
- Копропорфирия

III. Двойные порфирии

Эритропоэтическая уропорфирия (врожденная порфирия, или порфирия Гюнтера) характеризуется поражением кожи, гемолитической анемией с внутриклеточным гемолизом, отложением в коже, эритроцитах и выделением с мочой I изомера уропорфирина; встречается редко, течение тяжелое. Наследуется по аутосомно-рецессивному типу. В патогенезе болезни, вероятно, имеют значение повышение активности фермента синтазы δ-аминолевулиновой кислоты и небольшое снижение активности фермента косинтазы уропорфириногена III. В результате образуется избыточное количество уропорфириногена I, который не может использоваться в; организме для дальнейших превращений. Избыточное отложение уропорфирина в эритроцитах приводит к укорочению продолжительности их жизни, т.е. к повышенному гемолизу. При этом из эритроцитов освобождается большое количество уропорфириногена, который окисляется в уропорфирин и откладывается в коже, что обусловливает фотосенсибилизацию (повышенную чувствительность кожи к солнечному облучению).

Болезнь может проявляться у новорожденных (моча у них имеет красный цвет). Через несколько недель или месяцев после рождения на различных участках тела ребенка появляются пузыри, которые нередко изъязвляются. Появившиеся язвы плохо заживают, присоединяется вторичная инфекция. Характерно значительное потемнение зубов у ребенка, красноватое свечение их при УФ-облучении. У больных наблюдается увеличение размеров селезенки. Отмечаются типичные признаки гемолитической Анемии, протекающей с внутриклеточным гемолизом. При биохимическом исследовании обнаруживается большое количество I изомера уропорфирина и в значительно меньшей степени - I изомера копропорфирина в моче, большое количество I изомера уропорфирина в эритроцитах.

Определенный эффект оказывает спленэктомия, особенно произведенная в детском возрасте. При этом уменьшается гемолиз и степень фотосенсибилизации кожи. Прогноз серьезный. Эритропоэтическая уропорфирия приводит к глубокой инвалидизации и нередко к смерти в раннем детском возрасте, чаще от сепсиса. В современных условиях благодаря использованию различных антибиотиков больные нередко доживают до зрелого возраста

Нарушения биосинтеза гема. Порфирии

Наследственные и приобретённые нарушения синтеза гема, сопровождающиеся повышением содержания порфириногенов, а также

Рис. 13-6. Регуляция синтеза аминолевулинатсинтазы. А - при высокой концентрации железа в ретикулоцитах оно присоединяется к железосвязывающему белку и снижает сродство этого белка к железочувствительному элементу (IRE) матричной РНК, кодирующей аминолевулинатсинтазу. Белковые факторы инициации трансляции связываются с мРНК и инициируют трансляцию аминолевулинатсинтазы. Б - при низком содержании железа в ретикулоцитах железосвязывающий белок обладает высоким сродством к IRE и взаимодействует с ним. Белковые факторы инициации трансляции не могут присоединиться к мРНК, и трансляция прекращается.

продуктов их окисления в тканях и крови и появлением их в моче, называют порфириями ("порфирин" в переводе с греч. означает пурпурный).

Наследственные порфирии обусловлены генетическими дефектами ферментов, участвующих в синтезе гема, за исключением аминолевулинатсинтазы. При этих заболеваниях отмечают снижение образования гема. Поскольку гем - аллостерический ингибитор аминолевулинатсинтазы, то активность этого фермента повышается, и это приводит к накоплению промежуточных продуктов синтеза гема - аминолевулиновой кислоты и порфириногенов.

В зависимости от основной локализации патологического процесса различают печёночные и эритропоэтические наследственные порфирии. Эритропоэтические порфирии сопровождаются накоплением порфиринов в нормобластах и эритроцитах, а печёночные - в гепатоцитах.

При тяжёлых формах порфирии наблюдают нейропсихические расстройства, нарушения функций РЭС, повреждения кожи. Порфириногены не окрашены и не флуоресцируют, но на свету они легко превращаются в порфирины. Последние проявляют интенсивную красную флуоресценцию в ультрафиолетовых лучах. В коже на солнце в результате взаимодействия с порфиринами кислород переходит в синглетное состояние. Синглетный кислород вызывает ускорение ПОЛ клеточных мембран и разрушение клеток, поэтому порфирии часто сопровождаются фотосенсибилизацией и изъязвлением открытых участков кожи. Нейропсихические расстройства при порфириях связаны с тем, что аминолевулинат и порфириногены являются нейротоксинами.

Иногда при лёгких формах наследственных порфирии заболевание может протекать бессимптомно, но приём лекарств, являющихся индукторами синтеза аминолевулинатсинтазы, может вызвать обострение болезни. Индукторами синтеза аминолевулинатсинтазы являются такие известные лекарства, как сульфаниламиды, барбитураты, диклофенак, вольтарен, стероиды, гестагены. В некоторых случаях симптомы болезни не проявляются до периода полового созревания, когда повышение образования β-стероидов вызывает индукцию синтеза аминолевулинатсинтазы. Порфирии наблюдают и при отравлениях солями свинца, так как свинец нгибирует аминолевулинатдегидратазу и феррохелатазу. Некоторые галогенсодержащие гербициды и инсектициды являются индукторами синтеза аминолевулинатсинтазы, поэтому попадание их в организм сопровождается симптомами порфирии.

Метгемоглобинемии характеризуются повышенным содержанием в крови уровня метгемоглобина, представляющего собой одну из форм окисленного гемоглобина.

Эпидемиология Наследственные метгемоглобинемии распространены среди жителей Гренландии, индейцев Аляски и представителей племени навахос (США), спорадические случаи этой патологии описаны в странах Европы и Азии. В нашей стране она обнаружена у коренных жителей Якутии, единичные случаи - на других территориях. О распространенности приобретенных метгемоглобинемии, встречающихся чаще среди детей, сведений мало.

Этиология и патогенез В эритроцитах имеется комплекс факторов, участвующих в восстановлении метгемоглобина в гемоглобин, среди которых важную роль играет метгемоглобин-редуктаза. У здоровых лиц метгемоглобин образуется всегда, но в незначительном количестве (0,1 - 1 % ) под влиянием окислящих веществ, появляющихся в результате обмена веществ. При некоторых заболеваниях (легких, сердца) количество его может достигать 3-4 % . Метгемоглобин в отличие от оксигемоглобина содержит трехвалентное железо, стойко связывается с кислородом в легких и не отдает его тканям, что обусловливает развитие тканевой гипоксии.

Иногда вещества окисляющего действия (анилиновые краски, антипирин, амилнитрат, бертолетовая соль, гидрохинон, глицерин, мышьяковистый водород, ПАСК, сульфаниламиды, фенацетин, фурадонин, хинин, хлорамфеникол и др.), проникая в эритроциты, превращают гемоглобин в метгемоглобин. Лекарственные препараты, обладающие окисляющим свойством, при длительном назначении или даже однократном приеме в терапевтической дозе могут привести к увеличению в крови количества метгемоглобина и развитию метгемоглобинемии. Подобное явление наблюдается у детей в возрасте до полугода, имеющих легко окисляемый фетальный гемоглобин, у лиц с ферментативной недостаточностью в эритроцитах либо имеющих соответствующий аномальный гемоглобин (НbМ).

Классификация. Среди метгемоглобинемии выделяют наследственные и приобретенные формы заболевания.

Примерная формулировка диагноза: 1. НbА - наследственная метгемоглобинемия у гомозигот с выраженным постоянным цианозом в области носогубного треугольника, конъюнктивы, ногтей и слизистой полости рта с признаками отставания в развитии (физическом и психическом). 2. Приобретенная метгемоглобинемия, протекающая с кратковременным цианозом ногтей, слизистой полости рта, носогубного треугольника и другой локализации.

Участвующих в синтезе гема, за исключением аминолевулинатсинтазы. При этих заболеваниях отмечают снижение образования гема. Поскольку гем - аллостерический ингибитор аминолевулинатсинтазы, то активность этого фермента повышается, и это приводит к накоплению промежуточных продуктов синтеза гема - аминолевулиновой кислоты и порфириногенов (уропорфирогена I, выделяющегося в больших количествах с мочой, т.к. он не дает нужного протопорфирина IX, нужного для синтеза гема).

При тяжёлых формах порфирии наблюдают нейропсихические расстройства, нарушения функций РЭС, повреждения кожи. Порфириногены не окрашены и не флуоресцируют, но на свету они легко превращаются в порфирины. В этом случае моча окрашена в красный цвет. Последние проявляют интенсивную красную флуоресценцию в ультрафиолетовых лучах. В коже на солнце в результате взаимодействия с порфиринами кислород переходит в синглетное состояние. Синглетный кислород вызывает ускорение ПОЛ клеточных мембран и разрушение клеток, поэтому порфирии часто сопровождаются фотосенсибилизацией и изъязвлением открытых участков кожи. Нейропсихические расстройства при порфириях связаны с тем, что аминолевулинат и порфириногены являются нейротоксинами. Такие больные на фоне анемии, испытывают неосознанную потребность в свежей крови.

Иногда при лёгких формах наследственных порфирии заболевание может протекать бессимптомно, но приём лекарств, являющихся индукторами синтеза аминолевулинатсинтазы, может вызвать обострение болезни. Индукторами синтеза аминолевулинатсинтазы являются такие известные лекарства , как сульфаниламиды, барбитураты, диклофенак, вольтарен, стероиды, гестагены. В некоторых случаях симптомы болезни не проявляются до периода полового созревания, когда повышение образования β-стероидов вызывает индукцию синтеза аминолевулинатсинтазы. Порфирии наблюдают и при отравлениях солями свинца, так как свинец ингибирует аминолевулинатдегидратазу и феррохелатазу. Некоторые галогенсодержащие гербициды и инсектициды являются индукторами синтеза аминолевулинатсинтазы, поэтому попадание их в организм сопровождается симптомами порфирии.

При изучении статической биохимии были рассмотрены виды гемоглобина, гемоглобинозы и значение 2,3-дифосфоглицерата. (Образование токсичных форм кислорода и роль пентозного цикла распада глюкозы, обеспечивающего целостность эритроцита см. в темах «Биологическое окисление» и «Анаэробное окисление глюкозы».)

Выше указывалось, что регуляторную функцию биосинтеза гема выполняет железо и его особенности обмена.

Обмен железа

Содержание и функция железа . В организме содержится 4-5 г железа: в виде резервного (1/4) и функционально-активного (3/4). 62-70 % железа находится в гемоглобине эритроцитов, 5-10 % - в миоглобине, остальное - в тканях, где оно участвует во многих метаболических процессах: в составе энзимов-цитохромов, которые обеспечивают митохондриальный транспорт электронов, синтез ДНК и деление клеток, метаболизм гормонов мозгового вещества надпочечников, детоксикационные механизмы, с участием цитохрома Р 450 . Резервное железо постоянно переходит в функциональное и обратно. Так, за счет повторного использования костный мозг получает ежесуточно 20-25 мг железа.

Потребность. Ежедневная потребность в железе, абсорбируемом из пищи в организме человека, составляет: у детей от 0 до 4 месяцев жизни - 0,5 мг/день, от 1 года до 12 лет- 1,0 мг/день, женщины детородного периода - 2,8 мг/день (во время менструации потери железа составляют от 5 до 45 мг), молодые мужчины - 1 мг/день, старики - 0,9 мг/день, беременные женщины - 3-3,5 мг/день. В организм последних за время беременности должно поступать до 1 г железа (500 мг железа используется для синтеза дополнительного количества гемоглобина в организме беременной, 300 мг Fe 2+ необходимо формирующемуся плоду и 200 мг Fe 2+ компенсируют естественные потери металла организмом беременной женщины).

Всасывание железа . В пище железо в основном находится в окисленном состоянии (Fe 3+) в виде солей или в составе белков. Его освобождение происходит в кислой среде желудка , а в 12-перстной кишке восстанавливается до Fe 2+ аскорбиновой кислотой и всасывается в кишечнике из пищи. Fe 2+ в кишечном содержимом вначале связывается с белком-рецептором на поверхности эпителия слизистой оболочки кишки (b3-интегрином), что необходимо для перехода его через мембрану клетки слизистой в цитозоль. Далее, образовав комплекс с цитозольным транспортным белком-мобилферрином, Fe 2+ пересекает клетку эпителия слизистой кишечника, оставаясь в этом комплексе вплоть до поступления Fe 2+ в капиллярную сеть кишечника. Апоферритин улавливает избыточное железо в клетках слизистой оболочки кишечника. Трансляция этого белка также зависит от IRE элемента на м-РНК, к которому присоединяется избыток железа и инициирует синтез апофферитина. Образуется ферритин, который слущивается с эпителия кишечника при превышении потребности железа в организме.

Факторы, влияющие на абсорбцию железа. Абсорбции железа эпителиальными клетками желудочно-кишечного тракта способствуют сниженное насыщение трансферрина железом и повышенная эритропоэтическая активность крови. Абсорбция снижается при увеличении концентрации железа в клетках слизистой оболочки кишечника. В кишечнике более эффективна абсорбция Fe 2+ , чем Fe 3+ .

Поэтому аскорбиновая кислота, фруктоза, аминокислоты (цистеин, метионин) поддерживают двухвалентную форму железа и ускоряют его абсорбцию. В кишечнике лучше абсорбируется биодоступное железо, входящее в состав гема (мясные продукты, кровяная колбаса), чем железо из пищи растительного происхождения. Абсорбция Fe 2+ в желудочно-кишечном тракте зависит от возраста человека, функционального состояния его организма. Она наиболее высокая у детей первых месяцев жизни и достигает 57 %, у 7- 10-летних -7,75-17,75 %, у взрослых мужчин и женщин - 1,1-11,2 % и у беременных женщин - 20 % от поступившего в желудочно-кишечный тракт железа.

Транспорт железа. С выходом в кровоток двухвалентное железо окисляется до трехвалентного белком плазмы крови церрулоплазмином (ферроксидазой) и присоединяется к трансферрину, гликопротеину плазмы крови. Трансферрином Fe 3+ доставляется к тканям и используется в митохондриях эритробластов для синтеза гема, депонируется в макрофагах в виде резерва. Скорость поступления железа в неэритроидные клетки зависит от количества белков – рецепторов трансферрина в их мембране. Синтез рецепторов как и апоферритина регулируется на уровне трансляции этих белков и зависит от содержания железа в клетке. Однако, в отличие от апоферритина, железочувствительные элементы IRE м-РНК рецепторов находятся на 3′ конце. При низких концентрациях железа IRE железочувствительный белок защищает м-РНК рецепторов от разрушения и количество рецепторов увеличивается. При повышении содержания железа в клетке, как указывалось ранее, трансляция апоферритина ускоряется, а скорость синтеза рецепторов трансферрина снижается. Таким образом, эти механизмы регулируют содержание и использование железа для синтеза железосодержащих белков.

Плазма содержит от 1,8 до 2,6 мг/л трансферрина, 1 мг которого связывает 1,25 мкг Fe. В общем объеме плазмы содержится около 3 мг Fe 2+ . В норме лишь 1/3 трансферрина плазмы насыщена железом. Количество железа, которое может быть связано трансферрином, называется общей железосвязывающей способностью крови и в норме составляет 250-400 мкг % (45- 72 мкмоль/л). Концентрация железа в сыворотке крови колеблется от 50 до 160 мкг % (9-29 мкмоль/л). С мочой выводится за сутки 60-100 мкг железа.

Резервирование. Освобождение железа из комплекса трансферрин - железо обеспечивается энергией молекул АТФ, образуемых в эритробластах. Молекула трансферрина, отдавшая железо, смещается с мембранного участка молекулами трансферрина , связанными с железом, поскольку их сродство к рецепторам более сильное. Железо, поступившее в эритробласт, используется в митохондриях для синтеза гема и депонируется в эритробласте в виде резерва. В макрофагах печени и костного мозга резервное железо депонируется в молекуле ферритина. Внутри лизосом молекулы ферритина образуют большие аморфные нерастворимые агрегаты - гемосидерин. Его накопление в клетках печени и селезенке может привести к повреждению функций этих органов. Таким образом, ферритин и гемосидерин - это формы резервного железа в клетках. Из клеточного резерва железо освобождается в двухвалентном состоянии (благодаря энзиму ксантиноксидазе, аскорбиновой кислоте и др.), затем церулоплазмин окисляет Fe 2+ до трехвалентного состояния, Fe 3+ соединяется с трансферрином и транспортируется с плазмой крови к эритробластам. Печень может депонировать до 700 мг железа. Гемосидерин плохо растворим в воде и содержит 37% железа. Накопление гранул гемосидерина в печени, селезенке, поджелудочной железе приводит кповреждению этих органов – гемохроматозу (отложение пигмента ржавого цвета). Накопление гемосидерина в β-клетках панкреса приводит к их разрушению и как следствие, к сахарному диабету; в печени гемосидерин вызывает цирроз; в миокардиоцитах – сердечную недостаточность. К гемохроматозу могут привести частые переливания крови, в этих случаях больных лечат препаратами, связывающими железо.

Анемии. Дефицит железа в организме человека приводит к развитию гипохромной анемии и к гипоксии. Содержание гемоглобина в отдельном эритроците составляет 27,5-33,2 пикограмма. Снижение этой величины свидетельствует о гипохромном, увеличение - о гиперхромном содержании гемоглобина в эритроцитах. Этот показатель имеет диагностическое значение. Например, гиперхромия эритроцитов характерна для В 2 -дефицитной анемии, гипохромия - для железодефицитной анемии.

Анемия может развиться и при недостатке меди, входящей в состав трансферина, кобальта - составной части эритропоэтина , витамина В 12 , фолиевой кислоты, ионов натрия и хлора, участвующих в образовании соляной кислоты, необходимой для всасывания в кровь витамина В 12 ; нарушении синтеза гема; мутации в генах гемоглобина (гемоглобинозы); при обширном гемолизе эритроцитов; кровопотерях; при заболеваниях печени; почечной недостаточности; при инфекционных заболеваниях и т.д.

Дыхательная функция крови

Эритроциты являются главным участником транспорта газов кровью за счет гемоглобина. Олигомерная структура гемоглобина обеспечивает быстрое насыщение его кислородом в легких, так как каждый протомер (22) за счет Fe 2+ присоединяет координационной связью молекулу кислорода О 2 . Кислород, присоединяясь к первой -частице гемоглобина, вызывает конформационные изменения в последующих протомерах, что приводит к увеличению сродства к кислороду (4-я -субчастица в 300 раз скорее присоединяет молекулу кислорода, по сравнению с первой ). Благодаря кооперативной работе протомеров кривая насыщения гемоглобина кислородом имеет S – образную форму и характеризует сродство гемоглобина кислороду (см. физиологию). Эта кооперативность обеспечивает не только связывание максимального количества кислорода, но и освобождение его в тканях. Этому способствуют Н + и СО 2 , в свою очередь, кислород ускоряет высвобождение СО 2 и Н + в легочной ткани. Эта аллостерическая зависимость между присоединением Н + , О 2 и СО 2 получила название эффекта Бора. Присоединение О 2 и его отдача тканям происходит в результате разницы парциального давления кислорода в воздухе, альвеолах и тканях (в воздухе – 157 мм рт.ст., в альвеолах – 100, в тканях 35 мм рт.ст. соответственно). При насыщении гемоглобина кислородом увеличивается кислотность гемоглобина, причем HHbO 2 как кислота сильнее Н 2 СО 3 , а последняя сильнее дезоксигемоглобина HHb. Известно, что сильные кислоты вытесняют более слабые из их солей. СО 2 в тканях образуется в результате метаболизма (реакции декарбоксилирования); в эритроцитах работает карбоангидраза – фермент катализирующий обратимую реакцию:

СО 2 + Н 2 О  КА Н 2 СО 3 .

В эритроцитах превалируют соли К + , в плазме – Na + .

H HbO 2  H 2 CO 3  H Hb

Углекислый газ более растворим и каждые 100 мл плазмы может перенести 6 – 8%  13 мл 100 мл крови всего углекислого газа, 12% за счет карбгемоглобина , когда СО 2 присоединяется к -NH 2 полипептидных  и -цепей, и основное количество СО 2 переносится бикарбонатным путем (80%), когда в эритроцитах тканей образуется НСО 3  , а в альвеолах НСО 3  превращается в Н 2 СО 3 и посылает в выдыхаемый воздух СО 2 .

Ионы Н + , СО 2 уменьшают сродство гемоглобина к О 2 . Помимо этого отдачу О 2 тканям повышает 2,3-бифосфоглицерат БФГ, синтезируемый эритроцитами в процессе гликолиза из 1,3-бифосфоглицерата

N БФГ - 5 ммоль/л крови, при понижении парциального давления О 2 (у горцев) концентрация БФГ = 8 мл/л, что увеличивает снабжение тканей кислородом, т.е спасает их от гипоксии. Такая гипоксия называется экзогенной . Однако она может возникнуть и в шахтах, при неполадках в системах кислородообеспечения летательных аппаратов, подводных лодок, наркозной аппаратуры.

Гипоксия может возникнуть и при патологических процессах в связи с нарушением проходимости дыхательных путей (спазм, инородные тела, воспалительный процесс), уменьшением дыхательной поверхности легких (отек, пневмония). Обычно такая гипоксия сопровождается гиперкапнией (накопление углекислого газа). Сердечно-сосудистый тип гипоксии наблюдается при нарушении кровообращения; кровяной тип возникает при уменьшении эритроцитной массы или понижении содержания гемоглобина, отравлении угарным газом и т.д. Наконец, тканевой тип гипоксии обуславливается нарушением способности тканей поглощать кислород (отравление цианидами или другими ингибиторами биологического окисления, повреждения мембранных структур клетки, или нарушение синтеза ферментов биоокисления).

Буферные системы крови

Кровь способна противодействовать изменению рН при увеличении концентрации Н + или щелочных ионов, т.е. поддерживать постоянство значения своего рН, которое в норме колеблется от 7,37 до 7,44. Снижение величины рН ниже 6,8 или возрастание до 8,0 несовместимые с жизнью, в клинике практически не встречаются. Кровь представляет собой взвесь клеток в жидкой среде, поэтому ее кислотно-основное равновесие поддерживается совместным участием буферных систем плазмы и клеток крови.

Такие системы состоят из слабой кислоты и ее соли с сильным основанием или слабого основания с солью сильной кислоты. Важнейшими буферными системами крови являются бикарбонатная, фосфатная, белковая и наиболее мощная гемоглобиновая.

Бикарбонатная буферная система - с амая управляемая система внеклеточной жидкости: на ее долю приходится около 10% всей буферной емкости крови. В данной системе донором протонов является Н 2 СО 3 , а акцептором бикарбонат-ион НСО 3  .

При выделении в кровь больших количеств кислых продуктов , водородные ионы Н + взаимодействуют с НСО 3  образуя Н 2 СО 3 , которая выделяет СО 2 через легкие в результате их гипервентиляции. Если в крови увеличивается количество оснований, то они взаимодействуют со слабой угольной кислотой, образуя ионы бикарбонатов и воду. При этих взаимодействиях не происходит заметных сдвигов в величине рН и в плазме задерживается некоторое количество СО 2 в результате гиповентиляции легких. Данная буферная система тесно связана с гемоглобиновой системой , которая в 9 раз мощнее бикарбонатного буфера и составляет 75% всей буферной емкости крови.

Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и углекислого газа. Диссоциация кислотных групп гемоглобина меняется от его насыщения кислородом (ННbO 2 более сильная кислота, нежели HHb). В паре с ними работают их соли KHbO 2 и KHb, выполняющие функции сопряженных оснований. Системы гемоглобина и оксигемоглобина являются взаимопревращающимися и существуют как единое целое. Кислые соединения реагируют с калиевой солью гемоглобина: KHb + H 2 CO 3  KHCO 3 + HHb, что поддерживает рН крови в пределах допустимых величин. В капиллярах легких HHbO 2 подкисляет кровь и понижает щелочной резерв.

Белковая буферная система имеет меньшее значение для поддержания кислотно-основного равновесия (14%) в плазме крови, чем другие буферные системы. Благодаря наличию кислотно-основных групп (-СОО  и -N + H 3) она может быть донором протонов и их акцептором, в результате чего эффективна в области значений рН 7,2-7,4.

Фосфатная буферная система составляет 1% от буферной системы крови и представляет собой сопряженную кислотно-основную пару Н 2 РО 4  (донор протонов) и НРО (акцептор протонов). В крови соотношение НРО:Н 2 РО 4   составляет 4:1 и ее максимальная буферная емкость проявляется вблизи рН 7,2. Органические фосфаты также обладает буферной емкостью, но мощность их слабее.

Нарушения кислотно-основного равновесия (КОР)

Если компенсаторные механизмы организма не могут предотвратить сдвиги концентрации водородных ионов, то КОР нарушается и могут наблюдаться два противоположных состояния – ацидоз и алкалоз.

При ацидозе рН крови уменьшается и ниже 6,8 – вызывает смерть, если рН возрастает до 8, то такое состояние также не совместимо с жизнью.

В зависимости от механизмов развития нарушений КОР, выделяют дыхательный и метаболический ацидоз (или алкалоз).

Дыхательный ацидоз возникает в результате гиповентиляции легких при уменьшении объема дыхания (астма, эмфизема, отек легких), что ведет к накоплению СО 2 и Н 2 СО 3 в плазме (гиперкапния). рН крови снижается и повышается выведение с мочой свободных кислот или их аммонийных солей.

Метаболический ацидоз - частая и тяжелая форма нарушения КОР, обусловлен накоплением в тканях органических кислот (лактата или кетоновых тел). Такое возможно при голодании, лихорадке и особенно при диабете при недостаче инсулина. Метаболический ацидоз ведет к компенсаторному выделению СО 2 в бикарбонатной системе, а это в свою очередь ведет к понижению и НСО 3  , что ведет к неблагоприятным последствиям.

Дыхательный алкалоз возникает при резко усиленной вентиляции легких, сопровождающейся быстрым выделением из организма СО 2 и развитием гипокапнии (понижение парциального давления углекислого газа в крови). Данный вид алкалоза наблюдается при вдыхании чистого кислорода, пребывание в разреженной атмосфере, при возбуждении дыхательного центра барбитуратами и т.п. За несколько минут внеклеточная жидкость может иметь значение рН до 7,65 и при этом снижается щелочной резерв крови ввиду превращения НСО 3  в Н 2 СО 3 .

Метаболический алкалоз развивается при потере большого количества кислых эквивалентов (неукротимая рвота, всасывание основных эквивалентов кишечного сока и накопление основных эквивалентов в тканях). При метаболическом алкалозе повышается концентрация НСО 3  в плазме, компенсирующая урежением частоты дыхания с задержкой СО 2 . Кислотность мочи и содержание NH 3 в ней понижены.

В клинической практике специальными приборами измеряют рН, Р СО2 (парциальное давление углекислого газа) и концентрацию бикарбоната в плазме. Норма НСО 3   = 25 ммоль/л, Р СО 2 = 53,3 гПа (40 мм рт.ст.), Н 2 СО 3   = 0,625 мл/л.

ЛАБОРАТОРНЫЕ ЗАНЯТИЯ ПО БИОХИМИИ КРОВИ

Порфирии - гетерогенная группа заболеваний, вызванная нарушениями синтеза гема вследствие дефицита одного или нескольких ферментов.

Классификации порфирий

Единой классификации порфирий нет. Порфирии делят по причинам на:

    Наследственные . Возникают при дефекте гена фермента, участвующего в синтезе гема;

    Приобретенные . Возникают при ингибирующем влиянии токсических соединений (гексохлорбензол, соли тяжелых металлов - свинец) на ферменты синтеза гема.

В зависимости от преимущественной локализации дефицита фермента (в печени или эритроцитах) порфирин делится на:

    печеночные – наиболее распространенный тип порфирина к нему относится острая перемежающаяся порфирия (ОПП), поздняя кожная порфирия, наследственная копропорфирия, мозаичная порфирия;

    эритропоэтические – врожденная эритропоэтическая порфирия (болезнь Гюнтера), эритропоэтическая протопорфирия.

В зависимости от клинической картины, порфирии делят на:

  1. хронические.

Негативные последствия порфирий связаны с дефицитом гема и накоплением в тканях и крови промежуточных продуктов синтеза гема – порфириногенов и продуктов их окисления. При эритропоэтических порфириях порфирины накапливаются в нормобластах и эритроцитах, при печёночных - в гепатоцитах.

Для каждого вида порфирии существует определенный уровень ферментативного дефекта, в результате накапливаются продукты, синтезирующиеся выше этого уровня. Эти продукты являются основными диагностическими маркерами заболевания.

Порфириногены ядовиты, при тяжёлых формах порфирий они вызывают нейропсихические расстройства, нарушения функций РЭС и повреждения кожи.

Нейропсихические расстройства при порфириях связаны с тем, что аминолевулинат и порфириногены являются нейротоксинами.

В коже на солнце порфириногены легко превращаются в порфирины. Кислород при взаимодействии с порфиринами переходит в синглетное состояние. Синглетный кислород стимулирует ПОЛ клеточных мембран и разрушение клеток, поэтому порфирии часто сопровождаются фотосенсибилизацией и изъязвлением открытых участков кожи.

Порфириногены не окрашены и не флуоресцируют, а порфирины проявляют интенсивную красную флуоресценцию в ультрафиолетовых лучах. Избыток порфиринов который выводиться с мочой, придает ей темный цвет («порфирин» в переводе с греч. означает пурпурный).

Иногда при лёгких формах наследственных порфирии заболевание может протекать бессимптомно, но приём лекарств, являющихся индукторами синтеза аминолевулинатсинтазы, может вызвать обострение болезни. В некоторых случаях симптомы болезни не проявляются до периода полового созревания, когда повышение образования β-стероидов вызывает индукцию синтеза аминолевулинатсинтазы. Порфирии наблюдают и при отравлениях солями свинца, так как свинец ингибирует аминолевулинатдегидратазу и феррохелатазу. Некоторые галогенсодержащие гербициды и инсектициды являются индукторами синтеза аминолевулинатсинтазы, поэтому попадание их в организм сопровождается симптомами порфирии.

Виды порфирий

Острая перемежающая порфирия (ОПП) – причина – дефект гена, кодирующего ПБГ – дезаминазу. Наследуется по аутосомно-доминатному типу. Происходит накопление ранних предшественников синтеза гема: 5- АЛК (5-ALA) и порфобилиногена (ПБГ).

Бесцветный ПБГ на свету превращается в порфибилин и порфирин, они предают моче темный цвет. АЛК оказывает нейротоксическое действие, приводя к вялому параличу конечностей и парезу дыхательной мускулатуры. Последнее вызывает острую дыхательную недостаточность. Заболевание проявляется в среднем возрасте, провоцируется приемом анальгетиков, сульфаниломидных препаратов, так как они увеличивают синтез АЛК – синтазы.

Клинической симптоматикой являются острые боли в животе, рвота, запор, сердечно-сосудистые нарушения, нервно-психические расстройства. Не наблюдается повышенной чувствительности к свету, так как метаболическое нарушение проходит на стадии, предшествующей образованию уропорфириногена.

Для лечения применяют препарат нормосанг – аргинат гема. Действие основано на том, что гем, по механизму отрицательной обратной связи блокирует трансляцию АЛК – синтазы, а, следовательно, падает синтез АЛК и ПБГ, чем и достигается купирование симптоматики.

Врожденная эритропоэтическая порфирия -это еще более редкое врожденное заболевание, наследуе­мое по аутосомно-рецессивному типу. Молекуляр­ная природа этой болезни точно неизвестна; уста­новлено, однако, что для нее характерен определен­ный дисбаланс относительных активностей уропорфириноген-Ш-косинтазы и уропорфириноген-1-синтазы. Образование уропорфириногена Iв коли­чественном отношении значительно превосходит синтез уропорфириногенаIII-нормального изоме­ра на пути синтеза гема. Хотя генетическое наруше­ние распространяется на все клетки, проявляется оно по неизвестной причине преимущественно в эритропоэтической ткани. Пациенты с врожденной эритропоэтической порфирией экскретируют большие ко­личества изомеров типа I уропорфириногена и копропорфириногена; в моче оба этих соединения само­произвольно окисляются в уропорфирин Iи копропорфиринI-красные флуоресцирующие пигменты. Сообщалось о случае, когда наблюдалось неболь­шое повышение концентрации уропорфиринаIII, но отношение изомеров типа Iи IIIсоставляло пример­но 100:1.Циркулирующие эритроциты содержат бо­льшое количество уропорфирина 1,однако, наивыс­шая концентрация этого порфирина отмечена в клет­ках костного мозга (но не в гепатоцитах).

Отмечается светочувствительность кожи, обусловленная характером спектра поглощения порфириновых соединений, которые образуются в боль­ших количествах. У пациентов отмечаются трещины на коже, часто наблюдаются гемолитические явле­ния.

Наследственная копропорфирия -аутосомно-доминантное нарушение, обусловленное дефицитомкопропорфнрнногеноксидазы -митохондриального фермента, ответственного за превращение копропорфириногена IIIв протопорфириноген IX.Копропорфириноген IIIв больших количествах удаляется из организма в составе фекалий, а также вследствие его растворимости в воде экскретируется в большом количестве с мочой. Как и уропорфириноген, копропорфириноген на свету и воздухе быстро окисляется, превращаясь в красный пигмент копропорфирин.

Ограниченная при этом заболевании способность к синтезу гема (особенно в стрессовых условиях) приводит к дерепрессии АЛК-сиитазы. В результате наблюдается избыточное образование АЛК и порфобилиногена, а также других интермедиатов на пу­ти синтеза тема, образующихся на стадиях, предше­ствующих наследственно заблокированному этапу. Соответственно у пациентов с наследственной копропорфирией обнаруживаются все признаки и симптомы, связанные с избытком АЛК и порфобилиногена, которые характерны для перемежающейся острой порфирии, но помимо этого у них имеется повышенная светочувствительность, обусловленная присутствием избыточных количеств копропорфириногенов и уропорфириногенов. При этом заболе­вании введение гематина также может вызвать по крайней мере частичную репрессию АЛК-синтазы и смягчение симптомов, обусловленных перепрои­зводством интермедиатов биосинтеза гема.

Мозаичная порфирия , или наследственная фоторопорфирия, является аутосомно-доминантным нарушением, при котором происходит частичное блокирование ферментативного превращения протопорфириногена в гем. В норме это превращение осуществляется двумя ферментами, протопорфириногеноксидазой и феррохелатазой, локализованны­ми в митохондриях. Судя по данным, полученным на культуре фибробластов кожи, у больных мозаичной порфирией содержание протопорфириногеноксидазы составляет лишь половину нормального количе­ства. У пациентов с мозаичной порфирией наблю­дается относительная недостаточность содержания гема в стрессовых условиях, а также дерепрессированное состояние печеночной АЛК-синтазы. Как от­мечалось выше, повышенная активность АЛК-синтазы ведет к перепроизводству всех интермедиа­тов синтеза гема на участках перед заблокированной стадией. Таким образом, пациенты с мозаичной пор­фирией экскретируют с мочой избыточные количе­ства АЛК, порфобилиногена, уропорфирина и копропорфирина, а с фекалиями выделяют уропорфирин, копропорфирин и протопорфирин. Моча боль­ных пигментирована и флуоресцирует, а кожа чувствительна к свету так же, как и у больных позд­ней кожной порфирией (см. ниже).

Поздняя кожная порфирия , вероятно, является наиболее распространенной формой порфирии. Обычно она связана с теми или иными поражениями печени, особенно при избыточном потреблении ал­коголя или перегрузке ионами железа. Природа ме­таболического нарушения точно не установлена, но вероятной причиной является частичная недоста­точность уропорфириноген-декарбоксилазы. Наруше­ние, по-видимому, передается как аутосомно-доминантный признак, но генетическая пенетрантность различна и в большинстве случаев зависит от наличия нарушений функций печени. В соответствии с предсказаниями моча содержит повышенные коли­чества уропорфиринов типа Iи III;в то же время экскреция с мочой АЛК и порфобилиногена наблю­дается сравнительно редко. Иногда моча содержит весьма значительное количество порфиринов, при­дающих ей розоватый оттенок; при подкислении она чаще всего дает в ультрафиолетовой области розо­вую флуоресценцию.

Печень содержит большие количества порфири­нов и поэтому сильно флуоресцирует, тогда как у эритроцитов и клеток костного мозга флуоресцен­ция отсутствует. Главным клиническим проявле­нием при поздней кожной порфирии является повы­шенная светочувствительность кожи. У больных не наблюдается ни повышенной активности АЛК-синтазы, ни соответственно избыточного содержа­ния в моче порфобилиногена и АЛК; это коррели­рует с отсутствием острых приступов, характерных для перемежающейся острой порфирии.

Протопорфирия , или эритропоэтическая протопорфирия, по-видимому, обусловлена доминантно наследуемой недостаточной активностью феррохелатазы в митохондриях всех тканей; клинически эта болезнь проявляется как острая крапивница, вызы­ваемая воздействием солнечных лучей. Эритроциты, плазма и фекалии содержат повышенные количества протопорфирина IX,а ретикулоциты (незрелые эри­троциты) и кожа (при исследовании с помощью биопсии) часто флуоресцируют красным светом. Печень, вероятно, тоже вносит вклад в повыше­ние образования протопорфирина IX,однако экскре­ции с мочой порфиринов и их предшественников не наблюдается.

Синтез гемоглобина

Синтезированный в митохондриях гем индуцируется синтез цепей глобина на полирибосомах. Гены цепей глобина расположены в 11 и 16 хромосоме.

Цепи глобина формируют глобулы и соединяются с гемом. 4 глобулы нековалентно соединяются в гемоглобин.

Гемоглобин начинает синтезироваться на стадии базофильного эритробласта, а заканчивается у ретикулоцитов. В ретикулоцитах также идет синтез пуринов, пиримидинов, фосфатидов, липида. Чувствительным биохимическим индикатором для отличия ретикулоцитов от зрелых клеток является утрата последними глутаминазы. Глутамин в ретикулоцитах - источник углерода для синтеза порфирина и азота для синтеза пурина.

Строение гемоглобина

Гемоглобин - тетрамерный хромопротеин, имеет массу 64500Да, состоит из 4 гемов и 4 глобинов. Глобины представлены полипептидными цепями различных типов,,,и т.д.-цепь содержит 141 АК, а- цепь – 146 АК. Отдельные участки полипептидных цепей образуют правозакрученные-спирали, особое расположение в пространстве которых формирует глобулы. Глобула -субъединицы содержит 8-спиралей, а-субъединицы –7. Гем располагается в щелях между Е иFспиралями глобина, прикрепляясь через гистидинF 8 к спиралиFс помощью 5 координационной связи железа. Гидрофобные остатки аминокислот окружающие гем, препятствуют окислению железа водой. 4 глобулы с участием гидрофобных, ионных и водородных связей формируют шарообразный тетрамер гемоглобина. Максимально прочные связи, в основном за счет гидрофобных связей, образуются между- и-глобулами. В результате образуются 2 димера 1  1 и 2  2 . Димеры соединяются между собой в основном полярными (ионными и водородными) связями, поэтому взаимодействие димеров зависит от рН. Димеры легко перемещаются друг относительно друга. В центре тетрамера глобулы прилегают друг к другу неплотно, образуя полость.

Функции гемоглобина

    Обеспечивают перенос кислорода от легких к тканям. В сутки около 600 литров;

    Участвует в переносе углекислого газа и протонов от тканей к легким;

    Регулирует КОС крови.