Пример повторного интегрирования по частям. Методы интегрирования

Неопределенный интеграл

1Первообразная и неопределенный интеграл 1

2Простейшие свойства неопределенного интеграла. 3

Таблица основных интегралов 3

2.1Дополнительная таблица интегралов 4

3Замена переменной в неопределённом интеграле 5

3.1Метод интегрирования функций вида и (a≠ 0). 6

4Интегрирование по частям в неопределённом интеграле 7

4.1Метод интегрирования функций вида. 7

4.2Метод интегрирования функций вида: 8

5Интегрирование рациональных дробей 8

5.1Метод интегрирования простейших дробей 4 типа. 11

6Интегрирование иррациональных выражений 12

6.1Интегрирование тригонометрических выражений 14

  1. Первообразная и неопределенный интеграл

Решаем дифференциальное уравнение

на интервале , т.е. находим такую функцию , что . Так как , то уравнение (1) можно переписать в дифференциалах:

Любое решение такого уравнения называется первообразной функции . Итак, функция называется первообразной функции на интервале , если для всех . Случаи и/или не исключаются. Ясно, что если первообразная, то и также первообразная. Наша задача – найти все решения уравнения (1). Функция двух переменных называется общим решением уравнения (1) или, по-другому, неопределенным интегралом функции , если при подстановке вместо любого числа получаем частное решение уравнения (1) и любое частное решение уравнения (1) получается таким образом.

Неопределённый интеграл обозначается . Функция называется подинтегральной, дифференциал называется подинтегральным выражением, а -- знак интеграла (растянутая латинская буква S, первая буква слова Sum – сумма). Возникает вопрос о существовании первообразной и неопределенного интеграла. В разделе «Определенный интеграл», § Формула Ньютона-Лейбница будет доказано, что первообразная непрерывной функции всегда существует.

Лемма. Пусть тождественно для всех . Тогда -- константа на этом интервале.

Доказательство. Обозначим для какой-либо точки . Возьмём произвольную точку и к разности применим теорему Лагранжа: для некоторой точки . Отсюда и лемма доказана.□

Теорема о первообразных. Две первообразных одной и той же функции, определенной на интервале, отличаются на константу.

Доказательство. Пусть и -- первообразные функции . Тогда откуда, по лемме -- константа. Следовательно, . □

Следствие. Если -- первообразная функции , то .

Заметим, что если в качестве ОДЗ функции взять не интервал, а, например, такое несвязное множество как объединение двух интервалов , то любая функция вида

имеет нулевую производную, и тем самым лемма и теорема о первообразных перестает быть верной в этом случае.

  1. Простейшие свойства неопределенного интеграла.

1. Интеграл от суммы равен сумме интегралов:

2. Константу можно выносить за знак интеграла:

3. Производная от интеграла равна подинтегральной функции.

4. Дифференциал от интеграла равен подинтегральному выражению.

5. (Линейная замена переменных) Если , то (здесь ).

Таблица основных интегралов

В частности,

Для исключительного случая имеем:

    1. Дополнительная таблица интегралов

  1. Замена переменной в неопределённом интеграле

Определение неопределенного интеграла распространим на более общий случай: полагаем по определению . Таким образом, например

Теорема. Пусть -- дифференцируемая функция. Тогда

Доказательство. Пусть . Тогда

что и требовалось доказать.□

В частном случае, когда получаем линейную замену переменных (см. свойство 5, §1). Применение формулы (1) "слева на право" и будет означать замену переменной. Применение формулы (1) в обратном направлении, "справа налево" называется занесением под знак дифференциала.

Примеры. А.

1. Выделяем в числителе производную квадратного трехчлена:

3. Для вычисления первого интеграла в (2) применяем занесение под знак дифференциала:

Для вычисления второго интеграла выделяем в квадратном трехчлене полный квадрат и линейной заменой переменных сводим его к табличному.

Таким же методом вычисляются и интегралы вида

Примеры

  1. Интегрирование по частям в неопределённом интеграле

Теорема. Для дифференцируемых функций и имеет место соотношение

Доказательство. Интегрируя левую и правую часть формулы , получаем:

Так как по определению и , то формула (1) следует.□

Пример.

Для интегрирования таких функций заносим многочлен под знак дифференциала и применяем формулу интегрирования по частям. Процедуру повторяем k раз.

Пример.

  1. Интегрирование рациональных дробей

Рациональной дробью называется функция вида , где – многочлены. Если , то рациональную дробь называют правильной . В противном случае ее называют неправильной .

Следующие рациональные дроби называют простейшими

(2 тип)

(3 тип)

(4 тип) ,

Теорема 1. Любую дробь можно разложить в сумму многочлена и правильной рациональной дроби.

Доказательство. Пусть – неправильная рациональная дробь. Поделим числитель на знаменатель с остатком: Здесь -- многочлены, причем Тогда

Дробь правильная в силу неравенства . □

Теорема 2. Любую правильную рациональную дробь можно разложить в сумму простейших.

Алгоритм разложения.

а) Знаменатель правильной дроби раскладываем в произведение неприводимых многочленов (линейных и квадратичных с отрицательным дискриминантом):

Здесь и -- кратности соответствующих корней.

б) Раскладываем дробь в сумму простейших с неопределенными коэффициентами по следующим принципам:

Так мы поступаем для каждого линейного множителя и для каждого квадратичного множителя.

в) Получившееся разложение умножаем на общий знаменатель , и неопределенные коэффициенты отыскиваем из условия тождественности левой и правой части. Действуем комбинацией двух методов

??? – обоснование алгоритма

Примеры. А. Разложим в сумму простейших

Отсюда следует, что . Подставляя в это соотношение находим сразу . Итак

Б. Разложим рациональную дробь в сумму простейших. Разложение этой дроби с неопределенными коэффициентами имеет вид

Умножая на общий знаменатель, получаем соотношение

Подставляя сюда , находим , откуда . Подставляя находим . Приравнивая коэффициенты при получаем систему

Отсюда и . Складывая равенства последней системы, получаем и . Тогда и

Следовательно,

/**/ Задача. Обобщить результат примера А и доказать равенство

    1. Метод интегрирования простейших дробей 4 типа.

а) Выделяя в числителе производную знаменателя, разложим интеграл в сумму двух интегралов.

б) Первый из получившихся интегралов, после занесения под знак дифференциала, станет табличным.

в) Во втором в знаменателе выделяем полный квадрат и сводим вычисление к интегралу вида . К этому интегралу применяем следующую рекуррентную процедуру

К последнему интегралу применяем формулу интегрирования по частям:

Итак, если обозначить , то

Это представляет собой рекуррентную формулу вычисления интегралов c учетом начального значения .

Пример

  1. Интегрирование иррациональных выражений

Интегралы вида , где m/n,...,r/s -- рациональные числа с общим знаменателем k, сводятся к интегралу от рациональной функции заменой

Тогда суть рациональные выражения, следовательно, после подстановки, получается интеграл от рациональной дроби:

Вычислив этот интеграл (см. пар. 4) и сделав обратную замену , получим ответ.

Аналогично, интегралы вида

где ad-bc≠ 0, а k имеет тот же смысл как и выше, сводятся к интегралам от рациональной дроби заменой

Примеры . А. Вычислим интеграл

Б. Вычислим интеграл

Более простой метод интегрирования (но требующий догадки) этой же функции таков:

    1. Интегрирование тригонометрических выражений

Интегралы вида сводятся к интегралам от рациональной функции универсальной заменой

поэтому получаем интеграл от рационального выражения

В частных случаях  R(sin x) cos x dx,  R(cos x) sin x dx и R(sin 2 x, cos 2 x, tg x, ctg x) dx лучше пользоваться заменами соответственно.

Метод интегрирования по частям применяется, в основном, когда подынтегральная функция состоит из произведения двух сомножителей определенного вида. Формула интегрирования по частям имеет вид:

Она дает возможность свести вычисление заданного интеграла
к вычислению интеграла
, который оказывается более простым, чем данный.

Большую часть интегралов, вычисляемых методом интегрирования по частям, можно разбить на три группы:

1. Интегралы вида
,
,
, где
– многочлен,
– число, не равное нулю

В этом случае через обозначают многочлен

.

2. Интегралы вида
,
,
,
,
, где
– многочлен.

В этом случае через
обозначают
, а всю остальную часть подынтегрального выражения через:

3. Интегралы вида
,
, где
– числа.

В этом случае через обозначают
и применяют формулу интегрирования по частям дважды, возвращаясь в результате к исходному интегралу, после чего исходный интеграл выражается из равенства.

Замечание : В некоторых случаях для нахождения заданного интеграла формулу интегрирования по частям необходимо применять несколько раз. Также метод интегрирования по частям комбинируют с другими методами.

Пример 26.

Найти интегралы методом по частям: а)
; б)
.

Решение.

б)

3.1.4. Интегрирование дробно-рациональных функций

Дробно-рациональной функцией (рациональной дробью) называется функция, равная отношению двух многочленов:
, где
– многочлен степени
,
– многочлен степени .

Рациональная дробь называется правильной , если степень многочлена в числителе меньше степени многочлена в знаменателе, т.е.
, в противном случае (если
) рациональная дробь называется неправильной .

Любую неправильную рациональную дробь можно представить в виде суммы многочлена
и правильной рациональной дроби, разделив числитель на знаменатель по правилу деления многочленов:

,

где
– целая часть от деления,– правильная рациональная дробь,
– остаток от деления.

Правильные рациональные дроби вида:

I. ;

II.
;

III.
;

IV.
,

где ,,
,
,,,
– действительные числа и
(т.е. квадратный трехчлен в знаменателеIII и IV дробей не имеет корней – дискриминант отрицательный) называются простейшими рациональными дробями I, II, III и IV типов .

Интегрирование простейших дробей

Интегралы от простейших дробей четырех типов вычисляются следующим образом.

I)
.

II) ,
.

III) Для интегрирования простейшей дроби III типа в знаменателе выделяют полный квадрат, производят замену
. Интеграл после подстановки разбивают на два интеграла. Первый интеграл вычисляют выделением в числителе производной знаменателя, что дает табличный интеграл, а второй интеграл преобразовывают к виду
, так как
, что также дает табличный интеграл.

;

IV) Для интегрирования простейшей дроби IV типа в знаменателе выделяют полный квадрат, производят замену
. Интеграл после подстановки разбивают на два интеграла. Первый интеграл вычисляют подстановкой
, а второй с помощью рекуррентных соотношений.

Пример 27.

Найти интегралы от простейших дробей:

а)
; б)
; в)
.

Решение.

а)
.

Всякую правильную рациональную дробь, знаменатель которой может быть разложен на множители, можно представить в виде суммы простейших дробей. Разложение на сумму простейших дробей осуществляют методом неопределенных коэффициентов. Он заключается в следующем:


соответствует одна дробь вида;

– каждому множителю знаменателя
соответствует сумма дробей вида


соответствует дробь вида
;

– каждому квадратному множителю знаменателя
соответствует суммадробей вида

где – неопределенные коэффициенты.

Для нахождения неопределенных коэффициентов правую часть в виде суммы простейших дробей приводят к общему знаменателю и преобразовывают. В результате получается дробь с тем же знаменателем, что и в левой части равенства. Затем отбрасывают знаменатели и приравнивают числители. В результате получается тождественное равенство, в котором левая часть – многочлен с известными коэффициентами, а правая часть – многочлен с неопределенными коэффициентами.

Существует два способа определения неизвестных коэффициентов: метод неопределенных коэффициентов и метод частных значений.

Метод неопределенных коэффициентов.

Т.к. многочлены тождественно равны, то равны коэффициенты при одинаковых степенях . Приравнивая коэффициенты при одинаковых степеняхв многочленах левой и правой частей, получим систему линейных уравнений. Решая систему, определяем неопределенные коэффициенты.

Метод частных значений.

Т.к. многочлены тождественно равны, то, подставляя вместо в левую и правую части любое число, получим верное равенство, линейное относительно неизвестных коэффициентов. Подставляя столько значений, сколько неизвестных коэффициентов, получим систему линейных уравнений. Вместов левую и правую части можно подставлять любые числа, однако более удобно подставлять корни знаменателей дробей.

После нахождения значений неизвестных коэффициентов, исходная дробь записывается в виде суммы простейших дробей в подынтегральное выражение и осуществляется ранее рассмотренное интегрирование по каждой простейшей дроби.

Схема интегрирования рациональных дробей:

1. Если подынтегральная дробь неправильная, то необходимо представить ее в виде суммы многочлена и правильной рациональной дроби (т.е. разделить многочлен числителя на многочлен знаменателя с остатком). Если подынтегральная дробь правильная сразу переходим ко второму пункту схемы.

2. Разложить знаменатель правильной рациональной дроби на множители, если это возможно.

3. Разложить правильную рациональную дробь на сумму простейших рациональных дробей, используя метод неопределенных коэффициентов.

4. Проинтегрировать полученную сумму многочлена и простейших дробей.

Пример 28.

Найти интегралы от рациональных дробей:

а)
; б)
; в)
.

Решение.

а)
.

Т.к. подынтегральная функция неправильная рациональная дробь, то выделим целую часть, т.е. представим ее в виде суммы многочлена и правильной рациональной дроби. Разделим многочлен в числителе на многочлен в знаменателе уголком.

Исходный интеграл примет вид:
.

Разложим правильную рациональную дробь на сумму простейших дробей c помощью метода неопределенных коэффициентов:

, получаем:



Решая систему линейных уравнений, получим значения неопределенных коэффициентов: А = 1; В = 3.

Тогда искомое разложение имеет вид:
.

=
.

б)
.

.

Отбросим знаменатели и приравняем левую и правую части:

Приравнивая коэффициенты при одинаковых степенях , получаем систему:





Решая систему из пяти линейных уравнений, находим неопределенные коэффициенты:

.

Найдем исходный интеграл, учитывая полученное разложение:

.

в)
.

Разложим подынтегральную функцию (правильную рациональную дробь) на сумму простейших дробей с помощью метода неопределенных коэффициентов. Разложение ищем в виде:

.

Приведя к общему знаменателю, получим:

Отбросим знаменатели и приравняем левую и правую части:

Для нахождения неопределенных коэффициентов применим метод частных значений. Придадим частные значения , при которых множители обращаются в нуль, т. е. подставим эти значения в последнее выражение и получим три уравнения:


;
;


;
;


;
.

Тогда искомое разложение имеет вид:

Найдем исходный интеграл, учитывая полученное разложение:

Метод интегрирования по частям используется тогда, когда нужно упростить имеющийся неопределенный интеграл или свести его к табличному значению. Чаще всего он применяется в случае наличия показательных, логарифмических, прямых и обратных тригонометрических формул и их сочетаний в подынтегральном выражении.

Основная формула, необходимая для использования этого метода, выглядит так:

∫ f (x) d x = ∫ u (x) d (v (x)) = u (x) v (x) - ∫ v (x) d (u (x))

Она означает, что нам нужно сначала представить выражение под интегралом в качестве произведения функции u (x) и дифференциала функции v (x) . После этого мы вычисляем значение функции v (x) каким-либо методом (чаще всего применяется метод непосредственного интегрирования), а полученные выражения подставляем в указанную формулу, сводя исходный интеграл к разности u (x) v (x) - ∫ v (x) d (u (x)) . Полученный в итоге интеграл также можно взять, используя любой метод интегрирования.

Рассмотрим задачу, в которой нужно найти множество первообразных функции логарифма.

Пример 1

Вычислите неопределенный интеграл ∫ ln (x) d x .

Решение

Используем метод интегрирования по частям. Для этого берем ln (x) как функцию u (x) , а остаток подынтегрального выражения – как d (v (x)) . В итоге получаем, что ln (x) d x = u (x) d (v (x)) , где u (x) = ln (x) , d (v (x)) = d x .

Дифференциалом функции u (x) является d (u (x)) - u " (x) d x = d x x , а функция v (x) может быть представлена как v (x) = ∫ d (v (x)) = ∫ d x = x

Важно: константа C при вычислении функции v (x) будет считаться равной 0 .

Подставим то, что у нас получилось, в формулу интегрирования по частям:

∫ ln (x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = ln (x) · x - ∫ x · d x x = ln (x) · x - ∫ d x = ln (x) · x - x + C 1 = = x (ln (x) - 1) + C

где C = - C 1

Ответ: ∫ ln (x) d x = x (ln (x) - 1) + C .

Наиболее сложным в применении данного метода является выбор, какую именно часть исходного выражения под интегралом взять в качестве u (x) , а какую – d (v (x)) .

Разберем несколько стандартных случаев.

Если у нас в условии стоят интегралы вида ∫ P n (x) · e a x d x , ∫ P n (x) · sin (a x) d x либо ∫ P n (x) · cos (a x) d x , где a является коэффициентом, а P n (x) – многочленом степени n , то в качестве функции u (x) нужно взять именно P n (x) .

Пример 2

Найдите множество первообразных функции f (x) = (x + 1) · sin (2 x) .

Решение

Мы можем взять по частям неопределенный интеграл ∫ (x + 1) · sin (2 x) d x . Берем x + 1 в качестве u (x) и sin (2 x) d x в качестве d (v (x)) , то есть d (u (x)) = d (x + 1) = d x .

Используя непосредственное интегрирование, получим:

v (x) = ∫ sin (2 x) d x = - 1 2 cos (2 x)

Подставляем в формулу интегрирования по частям:

∫ (x + 1) · sin (2 x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = (x + 1) · - 1 2 cos (2 x) - ∫ - 1 2 cos (2 x) d x = = - 1 2 (x + 1) · cos (2 x) + 1 2 ∫ cos (2 x) · d (x) = = - 1 2 (x + 1) · cos (2 x) + 1 4 sin (2 x) + C

Ответ: ∫ (x + 1) · sin (2 x) d x = - 1 2 (x + 1) · cos (2 x) + 1 4 sin (2 x) + C .

Пример 3

Вычислите неопределенный интеграл ∫ (x 2 + 2 x) e x d x .

Решение

Берем многочлен второго порядка x 2 + 2 x в качестве u (x) и d (v (x)) - e x d x .

∫ x 2 + 2 x e x d x = u (x) = x 2 + 2 x , d (v (x)) = e x d x d (u (x)) = (2 x + 2) d x , v (x) = ∫ e x d x = e x = = u (x) v (x) - ∫ v (x) d (u (x)) = (x 2 + 2 x) e x - ∫ (2 x + 2) e x d x

К тому, что у нас получилось, надо опять применить метод интегрирования по частям:

∫ (2 x + 2) e x d x = (x 2 + 2 x) e x - ∫ 2 x + 2 e x d x = = u (x) = (2 x + 2) , d (v (x)) = e x d x d (u (x)) = 2 d x , v (x) = ∫ e x d x = e x = = (x 2 + 2 x) e x - (2 x + 2) e x - ∫ v (x) d (u (x)) = = (x 2 + 2 x) e x - (2 x + 2) e x - ∫ 2 e x d x = = (x 2 + 2 x - 2 x - 2) e x + 2 ∫ e x d x = (x 2 - 2) e x + 2 e x + C = x 2 e x + C

Ответ: ∫ (x 2 + 2 x) e x d x = x 2 e x + C .

Пример 4

Вычислите интеграл ∫ x 3 cos 1 3 x d x .

Решение

Согласно методу интегрирования по частям, берем u (x) = x 3 и d (v (x)) = cos 1 3 x d x .

В таком случае d (u (x)) = 3 x 2 d x и v (x) = ∫ cos 1 3 x d x = 3 sin 1 3 x .

Теперь подставим полученные выражения в формулу:

∫ x 3 cos 1 3 x d x = u (x) v (x) - ∫ v (x) d (u)) = = x 3 3 sin 1 3 x - ∫ 3 x 2 3 sin 1 3 x d x = = 3 x 3 sin 1 3 x - 9 ∫ x 2 sin 1 3 x d x

У нас получился неопределенный интеграл, который опять же нужно взять по частям:

∫ x 3 cos 1 3 x d x = 3 x 3 sin 1 3 x - 9 ∫ x 2 sin 1 3 x d x = = u (x) = x 2 , d (v (x)) = sin 1 3 x d x d (u (x)) = 2 x d x , v (x) = ∫ sin 1 3 x d x = - 3 cos 1 3 x = = 3 x 3 sin 1 3 x - 9 - 3 x 2 cos 1 3 x - ∫ - 3 cos 1 3 x · 2 x d x = = 3 x 3 sin 1 3 x + 27 x 2 · cos 1 3 x - 54 ∫ x cos 1 3 x d x

Выполняем частичное интегрирование еще раз:

∫ x 3 cos 1 3 x d x = 3 x 3 sin 1 3 x + 27 x 2 · cos 1 3 x - 54 ∫ x cos 1 3 x d x = = u (x) = x , d (v (x)) = cos 1 3 x d x d (u (x)) = d x , v (x) = ∫ cos 1 3 x d x = 3 sin 1 3 x = = 3 x 3 sin 1 3 x + 27 x 2 cos 1 3 x - 54 3 x sin 1 3 x - ∫ 3 sin 1 3 x d x = = 3 x 3 - 162 x sin 1 3 x + 27 x 2 cos 1 3 x + 162 ∫ sin 1 3 x d x = = (3 x 3 - 162 x) sin 1 3 x + 27 x 2 cos 1 3 x - 486 cos 1 3 x + C = = (3 x 3 - 162 x) sin 1 3 x + (27 x 2 - 486) cos 1 3 x + C

Ответ: ∫ x 3 cos 1 3 x d x = (3 x 3 - 162 x) sin 1 3 x + (27 x 2 - 486) cos 1 3 x + C .

Если же у нас в условии стоят интегралы вида ∫ P n (x) · ln (a x) d x , ∫ P n (x) · a r c sin (a x) d x , ∫ P n (x) · a r c cos (a x) d x , ∫ P n (x) · a r c t g (a x) d x , ∫ P n (x) · a r c c t g (a x) d x

то нам следует брать в качестве u (x) функции a r c t g (a x) , a r c c t g (x) , ln (a x) , a r c sin (a x) , a r cos (a x) .

Пример 5

Вычислите множество первообразных функции (x + 1) ln (2 x) .

Решение

Принимаем ln (2 x) в качестве u (x) , а (x + 1) d x – в качестве d (v (x)) . Получаем:

d (u (x)) = (ln (2 x)) " d x = 1 2 x (2 x) " d x = d x x v (x) = ∫ (x + 1) d x = x 2 2 + x

Подставим эти выражения в формулу:

∫ (x + 1) ln (2 x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = x 2 2 + x ln 2 x - ∫ x 2 2 + x d x x = = x 2 2 + x ln (2 x) - ∫ x 2 + 1 d x = x 2 2 + x ln 2 x - 1 2 ∫ x d x - ∫ d x = = x 2 2 + x ln (2 x) - x 2 4 - x + C

Ответ: ∫ (x + 1) ln (2 x) d x = x 2 2 + x ln (2 x) - x 2 4 - x + C .

Пример 6

Вычислите неопределенный интеграл ∫ x · a r c sin (2 x) d x .

Решение

Решаем, какую часть взять за u (x) , а какую – за d (v (x)) . Согласно правилу, приведенному выше, в качестве первой функции нужно взять a r c sin (2 x) , а d (v (x)) = x d x . Получим:

d (u (x)) = (a r c sin (2 x) " d x = 2 x " d x 1 - (2 x) 2 = 2 d x 1 - (2 x) 2 , v (x) = ∫ x d x = x 2 2

Подставляем значения в формулу:

∫ x · a r c sin (2 x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = x 2 2 a r c sin (2 x) - ∫ x 2 2 - 2 d x 1 - (2 x) 2 = x 2 2 a r c sin (2 x) - ∫ x 2 d x 1 - 4 x 2

В итоге мы пришли к следующему равенству:

∫ x · a r c sin (2 x) d x = x 2 2 a r c sin (2 x) - ∫ x 2 d x 1 - 4 x 2

Теперь вычислим получившийся в итоге интеграл ∫ x 2 d x 1 - 4 x 2:

∫ x 2 d x 1 - 4 x 2 = ∫ x 2 d x 4 1 4 - x 2 = 1 2 ∫ x 2 d x 1 4 - x 2 = - 1 2 ∫ - x 2 d x 1 4 - x 2 = = - 1 2 ∫ 1 4 - x 2 - 1 4 1 4 - x 2 d x = - 1 2 1 4 - x 2 d x + 1 8 ∫ d x 1 4 - x 2 = = - 1 2 ∫ 1 4 - x 2 d x + 1 8 a r c sin (2 x)

Здесь можно применить метод интегрирования по частям и получить:

∫ x 2 d x 1 - 4 x 2 = - 1 2 ∫ 1 4 - x 2 d x + 1 8 a r c sin (2 x) = = u (x) = 1 4 - x 2 , d (v (x)) = d x d (u (x)) = 1 4 - x 2 " d x 2 1 4 - x 2 = - x d x 1 4 - x 2 , v (x) = ∫ d x = x = = - 1 2 u (x) v (x) - ∫ v (x) d (u (x)) + 1 8 a r c sin (2 x) = = - 1 2 x 1 4 - x 2 - ∫ - x 2 d x 1 4 - x 2 + 1 8 a r c sin (2 x) = = - 1 2 x 1 4 - x 2 - 1 2 ∫ x 2 d x 1 4 - x 2 + 1 8 a r c sin (2 x) = = - 1 2 x 1 4 - x 2 - ∫ x 2 d x 1 - 4 x 2 + 1 8 a r c sin (2 x)

Теперь наше равенство выглядит так:

∫ x 2 d x 1 - 4 x 2 = - 1 2 x 1 4 - x 2 - ∫ x 2 d x 1 - 4 x 2 + 1 8 a r c sin (2 x)

Мы видим, что интеграл справа аналогичен тому, что получился слева. Переносим его в другую часть и получаем:

2 ∫ x 2 d x 1 - 4 x 2 = - 1 2 x 1 4 - x 2 + 1 8 a r c sin (2 x) + C 1 ⇒ x 2 d x 1 - 4 x 2 = - 1 4 x 1 4 - x 2 + 1 16 a r c sin (2 x) + C 2 x 2 d x 1 - 4 x 2 = - 1 8 x 1 4 - x 2 + 1 16 a r c sin (2 x) + C 2

где C 2 = C 1 2

Вернемся к исходным переменным:

∫ x · a r c sin (2 x) d x = x 2 2 a r c sin (2 x) - ∫ x 2 d x 1 - 4 x 2 = = x 2 2 a r c sin (2 x) - - 1 8 x 1 - 4 x 2 + 1 16 a r c sin (2 x) + C 2 = = 1 2 x 2 - 1 8 a r c sin (2 x) + 1 8 x 1 - 4 x 2 + C

где С = - С 2

Ответ: ∫ x · a r c sin (2 x) d x = 1 2 x 2 - 1 8 a r c sin (2 x) + 1 8 x 1 - 4 x 2 + C .

Если же у нас в задаче стоит интеграл вида ∫ e a · x · sin (b x) d x либо ∫ e a · x · cos (b x) d x , то в качестве u (x) может быть выбрана любая функция.

Пример 7

Вычислите неопределенный интеграл ∫ e x · sin (2 x) d x .

Решение

∫ e x sin (2 x) d x = u (x) = sin (2 x) , d (v (x)) = e x d x d (u (x)) = 2 cos (2 x) d x , v (x) = ∫ e x d x = e x = = u (x) v (x) - ∫ v (x) d (u (x)) = sin (2 x) e x - ∫ e x · 2 cos 2 x d x = = sin (2 x) e x - 2 ∫ e x cos (2 x) d x = u (x) = cos (2 x) , d (v (x)) = e x d x d (u (x)) = - 2 sin (2 x) d x , v (x) = ∫ e x d x = e x = = sin (2 x) e x - 2 cos (2 x) e x - ∫ (e x (- 2 sin (2 x) d x)) = = sin (2 x) e x = 2 cos (2 x) e x - 4 ∫ e x sin (2 x) d x

В итоге у нас получится:

∫ e x sin (2 x) d x = sin (2 x) e x - 2 cos (2 x) e x - 4 ∫ e x sin (2 x) d x

Мы видим одинаковые интегралы слева и справа, значит, можем привести подобные слагаемые:

5 ∫ e x sin (2 x) d x = sin (2 x) e x - 2 cos (2 x) e x ⇒ ∫ e x sin (2 x) d x = 1 5 sin (2 x) e x - 2 5 cos (2 x) e x + C

Ответ: ∫ e x sin (2 x) d x = 1 5 sin (2 x) e x - 2 5 cos (2 x) e x + C

Этот способ решения является стандартным, и справа нередко получается интеграл, который идентичен исходному.

Мы рассмотрели наиболее типовые задачи, в которых можно точно определить, какую часть выражения взять за d (v (x)) , а какую за u (x) . В остальных случаях это приходится определять самостоятельно.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Представлен метод интегрирования неопределенного интеграла по частям. Даны примеры интегралов, вычисляющихся этим методом. Разобраны примеры решений.

Содержание

См. также: Методы вычисления неопределенных интегралов
Таблица неопределенных интегралов
Основные элементарные функции и их свойства

Формула интегрирования по частям имеет вид:
.

Метод интегрирования по частям состоит в применении этой формулы. При практическом применении стоит отметить, что u и v являются функциями от переменной интегрирования. Пусть переменная интегрирования обозначена как x (символ после знака дифференциала d в конце записи интеграла) . Тогда u и v являются функциями от x : u(x) и v(x) .
Тогда
, .
И формула интегрирования по частям принимает вид:
.

То есть подынтегральная функция должна состоять из произведения двух функций:
,
одну из которых обозначаем как u: g(x) = u , а у другой должен вычисляться интеграл (точнее находиться первообразная):
, тогда dv = f(x) dx .

В некоторых случаях f(x) = 1 . То есть в интеграле
,
можно положить g(x) = u, x = v .

Резюме

Итак, в данном методе, формулу интегрирования по частям стоит запомнить и применять в двух видах:
;
.

Интегралы, вычисляющиеся интегрированием по частям

Интегралы, содержащие логарифм и обратные тригонометрические (гиперболические) функции

По частям часто интегрируются интегралы, содержащие логарифм и обратные тригонометрические или гиперболические функции. При этом ту часть, которая содержит логарифм или обратные тригонометрические (гиперболические) функции обозначают через u , оставшуюся часть - через dv .

Вот примеры таких интегралов, которые вычисляются методом интегрирования по частям:
, , , , , , .

Интегралы, содержащие произведение многочлена и sin x, cos x или e x

По формуле интегрирования частям находятся интегралы вида:
, , ,
где P(x) – многочлен от x . При интегрировании, многочлен P(x) обозначают через u , а e ax dx , cos ax dx или sin ax dx - через dv .

Вот примеры таких интегралов:
, , .

Примеры вычисления интегралов методом интегрирования по частям

Примеры интегралов, содержащих логарифм и обратные тригонометрические функции

Пример

Вычислить интеграл:

Подробное решение

Здесь подынтегральное выражение содержит логарифм. Делаем подстановки
u = ln x ,
dv = x 2 dx .
Тогда
,
.

Вычисляем оставшийся интеграл:
.
Тогда
.
В конце вычислений нужно обязательно добавить постоянную C , поскольку неопределенный интеграл - это множество всех первообразных. Также ее можно было добавлять и в промежуточных вычислениях, но это лишь загромождало бы выкладки.

Более короткое решение

Можно представить решение и в более коротком варианте. Для этого не нужно делать подстановки с u и v , а можно сгруппировать сомножители и применить формулу интегрирования по частям во втором виде.

.

Другие примеры

Примеры интегралов, содержащих произведение многочлена и sin x, cos x или ex

Пример

Вычислить интеграл:
.

Введем экспоненту под знак дифференциала:
e - x dx = - e - x d(-x) = - d(e - x) .

Интегрируем по частям.
.
Также применяем метод интегрирования по частям.
.
.
.
Окончательно имеем.