Сенсорная система зрения.

Зрительная сенсорная система (зрительный анализатор) представляет собой совокупность защитных оптических, рецепторных и нервных структур, воспринимающих и анализирующих световые раздражители. Зрительная система состоит из периферического отдела – глаза, промежуточных звеньев – подкорковых зрительных центров (наружное коленчатое тело таламуса и переднее двухолмие) и конечного звена – зрительной коры. Все уровни зрительной системы соединены друг с другом проводящими путями.

Строение глаза

Орган зрения человека – глаз (рис. 1) имеет шарообразную (или близкую к таковой) форму. Он включает в себя ядро, покрытое тремя оболочками.

    Горизонтальный разрез правого глаза: 1 – склера; 2 – роговая оболочка (роговица); 3 – сосудистая оболочка; 4 – ресничное тело; 5 – радужная оболочка; 6 – зрачок; 7 – пигментный эпителий; 8 – сетчатка; 9 – зрительный нерв; 10 – передняя камера глаза; 11 – хрусталик; 12 – стекловидное тело.

Наружная плотная непрозрачная оболочка – склера - выполняет главным образом защитную, механическую функцию. В передней части глазного яблока склера переходит в прозрачную роговую оболочку, или роговицу . Кривизна поверхности роговицы определяет особенности преломления света. Роговица обладает наибольшей преломляющей способностью. Под склерой лежит сосудистая оболочка , которая образована сетью кровеносных сосудов. Ее основное назначение – питание глазного яблока. Спереди сосудистая оболочка утолщается и переходит сначала в ресничное тело (мышца, изменяющая кривизну хрусталика) и далее – в радужную оболочку , которые состоят из гладких мышечных волокон, кровеносных сосудов и пигментных клеток. Цвет радужной оболочки зависит от пигментации составляющих ее клеток и их распределения. Между роговицей и радужной оболочкой находится передняя камера глаза, наполненная жидкостью – «водянистой влагой ». В центре радужной оболочки имеется отверстие – зрачок, играющий роль диафрагмы и регулирующий величину светового потока, проникающего внутрь глаза. Размер зрачка зависит от освещенности. Контроль за изменениями размера зрачка осуществляется автоматически нервными волокнами, заканчивающимися в мускулатуре радужной оболочки. Круговая мышца, суживающая зрачок – сфинктер – иннервируется парасимпатическими волокнами, мышца, расширяющая зрачок – дилататор – иннервируется симпатическими волокнами. Реакция расширения зрачка до максимального диаметра – 7,5 мм – очень медленная: она длится около 5 минут. Максимальное сокращение диаметра зрачка до 1,8 мм достигается быстрее – всего за 5 секунд.

Позади радужной оболочки расположен хрусталик . Он представляет собой двояковыпуклую линзу, расположенную в сумке, волокна которой соединены с ресничными мышцами. С помощью этих мышц хрусталик способен изменять свою кривизну. Такая способность хрусталика называется аккомодацией. Аккомодации обеспечивает ясное видение различно удаленных предметов. При рассматривании близко расположенных предметов кривизна хрусталика увеличивается, если же предмет находится далеко, кривизна уменьшается. Аккомодация хрусталика иногда оказывается недостаточной, чтобы спроецировать изображение точно на сетчатку. Если расстояние между хрусталиком и сетчаткой больше, чем фокусное расстояние хрусталика, то возникает близорукость (миопия). Если сетчатка расположена слишком близко к хрусталику и фокусировка хороша только при рассматривании далеко расположенных предметов, возникает дальнозоркость (гиперметропия).

Внутри глаза, позади хрусталика, находится стекловидное тело . Оно представляет собой коллоидный раствор гиалуроновой кислоты во внеклеточной жидкости. Поскольку и хрусталик, и стекловидное тело являются белковыми структурами, то обменные процессы в них могут нарушаться. Например, с возрастом снижается эластичность хрусталика, поэтому ухудшается способность видения близко расположенных предметов (старческая дальнозоркость), постепенно он теряет свою прозрачность, возникает заболевание, получившее название катаракты. В стекловидном теле могут появляться плотные вкрапления, что субъективно ощущается как темные точки, пылинки в поле зрения. Эти изменения в конечном итоге снижают четкость изображения и могут привести к потере зрения. Стекловидное тело и хрусталик называют оптической системой глаза, которая обеспечивает фокусировку изображения на рецепторной поверхности сетчатки. Изображение на сетчатке оказывается четким, но уменьшенным и перевернутым. Мозг исправляет эту «ошибку», руководствуясь не только поступающей зрительной информацией, но и информацией от других сенсорных систем (вестибулярной, проприоцептивной, кожной).

Строение сетчатки

Сетчатка – с нейроанатомической точки зрения – высокоорганизованная слоистая структура, объединяющая рецепторы и нейроны. Она состоит из нескольких слоев клеток, выполняющих разные функции. Несколько упрощенно строение светочувствительного и проводящего аппарата сетчатки можно представить в виде следующей схемы (рис. 2).

Наружный слой сетчатки, плотно примыкающий непосредственно к сосудистой оболочке, образован пигментными клетками, содержащими пигмент фусцин. Этот пигмент поглощает свет, препятствуя его отражению и рассеиванию, что способствует четкости зрительного восприятия. К пигментному слою изнутри примыкает слой фоторецепторов – колбочек и палочек, которые повернуты от пучка падающего света таким образом, что их светочувствительные сегменты спрятаны в промежутках между клетками пигментного слоя. Каждый фоторецептор состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке.

Палочки и колбочки отличаются функционально: палочки реагируют на свет и обеспечивают зрительное восприятие при слабой освещенности, а колбочки функционируют при ярком свете и обеспечивают восприятие цвета. Фоторецепторы содержат зрительные пигменты, которые по своей природе являются белками. В палочках содержится пигмент родопсин, в колбочках – пигменты иодопсин, хлоролаб и эритлаб, необходимые для цветового зрения. Свет, попадая на сетчатку, вызывает разложение пигмента. Эти химические преобразования сопровождаются изменением потенциала на мембране рецептора, т.е. возникновением рецепторного потенциала. Таким образом, функция рецепторов сводится к преобразованию энергии квантов света в электрическую энергию ответа клетки.

На сетчатке каждого глаза около 6 млн. колбочек и 120 млн. палочек – всего около 130 млн. фоторецепторов. Они распределены по сетчатке неравномерно: чем ближе к периферии, тем больше палочек, чем ближе к центру, тем больше колбочек, наконец, в самом центре сетчатки напротив зрачка располагаются только колбочки. Эта область называется желтым пятном или центральной ямкой . Здесь плотность колбочек составляет 150 тысяч на 1 квадратный миллиметр, поэтому в области желтого пятна острота зрения максимальна.

Центральная часть сетчатки представлена биполярными клетками , имеющими по два относительно длинных отростка, одним из которых они контактируют с фоторецепторами, другим – с ганглиозными клетками сетчатки, которые, в свою очередь, составляют ее внутреннюю часть. Ганглиозные клетки обладают круглыми рецептивными полями с четко выраженными центром и периферией. Размеры центральной части и периферической каймы могут изменяться в зависимости от освещенности. Если центр возбуждается при попадании света на сетчатку, то периферия при этом тормозится. Может быть и обратное соотношение. Ганглиозные клетки имеют как палочковые, так и колбочковые рецептивные поля. В последнем случае центр и периферия рецептивного поля возбуждается (или тормозится) определенным цветом. Например, если в ответ на предъявление красного цвета центр возбуждается, то периферия будет тормозиться. Такие комбинации могут быть самыми разнообразными. Ганглиозные клетки в отличие от других элементов сетчатки способны генерировать потенциалы действия, направляющиеся по нервным волокнам к центральным структурам мозга.

Ганглиозные клетки являются выходными элементами сетчатки. Их аксоны формируют зрительный нерв, который пронизывает сетчатку в противоположном направлении и входит в полость черепа. В месте вхождения в сетчатку волокон зрительного нерва фоторецепторы отсутствуют; эта область получила название слепого пятна .

Таким образом, фоторецепторы, биполяры и ганглиозные клетки представляют собой три последовательных звена переработки зрительной информации.

На уровне между рецепторами и биполярами имеются специализированные клетки с горизонтальным расположением отростков, которые регулируют передачу возбуждения от рецепторов к биполярам и носят название горизонтальных . Между биполярами и ганглиозными клетками, располагаясь как бы симметрично горизонтальным, находятся амакриновые клетки , которые «управляют» передачей электрических сигналов от биполяров к ганглиозным клеткам. На теле амакриновых клеток заканчиваются центробежные волокна, несущие возбуждение из ЦНС. Горизонтальные и амакриновые клетки обеспечивают латеральное торможение между соседними клеточными элементами сетчатки, ограничивая распространение зрительного возбуждения внутри нее.

В заключение следует отметить, что сетчатка как система позволяет выделять такие характеристики светового сигнала, как его интенсивность (яркость), пространственные параметры (размер, конфигурация). Рецептивные поля, построенные по принципу антагонистических отношений центра и периферии, позволяют оценивать контрастность и контуры изображения, а также оптимальным образом выделять полезный сигнал из шума.

Центральные структуры зрительной системы

Наружное коленчатое тело (НКТ) – основной подкорковый центр зрительного анализатора. Большая часть зрительных волокон (аксонов ганглиозных клеток) в составе зрительного тракта оканчивается в этой структуре. Основные пути от НКТ идут в 17-е, в меньшей степени - в 18-е и 19-е зрительные поля (по Бродману). Другие волокна направляются к верхнему двухолмию, подушке зрительного бугра и другим структурам.

Рецептивные поля нейронов НКТ имеют различную форму – от круглой до вытянутой; существуют поля с возбуждающимся центром и тормозной периферией и наоборот. В НКТ кодируется информация о пространственных характеристиках (размере) зрительного изображения, об уровне освещенности, о цвете. Ввиду многочисленных связей НКТ с различными таламическими ядрами (в первую очередь ассоциативными) можно предположить, что на этом уровне происходит перераспределение потока информации по различным каналам и начинается процесс анализа наиболее сложных параметров стимула, в частности анализа информации о биологической значимости данного раздражителя.

Переднее двухолмие. Хотя к передним холмам среднего мозга направляется не более 10% зрительных волокон, эта структура играет важную роль в организации ориентировочного поведения.

Переднее двухолмие имеет слоистую структуру. В верхних слоях заканчиваются волокна, идущие от сетчатки, коры мозга (затылочной, лобной и височной областей), из спинного мозга, от задних холмов четверохолмия, НКТ, мозжечка и черной субстанции. Нижние слои называют эфферентным центром, дающим начало наиболее длинным нисходящим путям. Они направляются в спинной мозг, к ядрам черепно-мозговых нервов, в ретикулярную формацию и другим структурам, обеспечивающим зрительные ориентировочные рефлексы.

Большая часть нейронов не отвечает или слабо отвечает на действие диффузного света или на неподвижные объекты, но дает сильную реакцию на движение, поэтому их называют детекторами движения. При этом более 75% нейронов реагируют только на определенное направление движения (преимущественно на движение в горизонтальной плоскости), и сила реакции зависит от скорости движения. Удаление или разрушение переднего двухолмия у животных сопровождается потерей способности следить за движущимся объектом. В связи с этим считают, что переднее двухолмие осуществляет координацию движений глазных яблок с поступлением зрительной информации.

Зрительная кора. Зрительная кора имеет слоистую структуру. В зависимости от выраженности тех или иных слоев ней выделяют первичную область – 17-е поле, вторичную – 18-е поле и третичную – 19-е поле по Бродману. Поле 17 является центральным полем коркового ядра анализатора, 18-е и 19-е поля – периферическими.

Функциональное значение зрительной коры чрезвычайно велико. Это доказывается наличием многочисленных связей не только со специфическими зрительными подкорковыми образованиями, но и с ассоциативными и неспецифическими ядрами таламуса, с ретикулярной формацией, теменной ассоциативной областью и т.д.

Реакции одиночных нейронов зрительной коры впервые были зарегистрированы Р. Юнгом в начале 50-х г.г. Было показано, что на диффузный засвет сетчатки реагирует лишь около половины нейронов. Большая же часть нейронов отвечает лишь на стимулы, ориентированные определенным образом (лучше всего – на светлые полосы на темном фоне или пространственные решетки, состоящие из чередующихся светлых и темных полос).

В 60-х гг. ХХ в. американские нейрофизиологи Д. Хьюбел и Т. Визель, исследуя свойства нейронов зрительной коры, выделили три типа рецептивных полей – простые, сложные и сверхсложные. Рецептивные поля простого типа имеют прямоугольную форму, состоят из центра и периферии, границы которых приблизительно параллельны друг другу. Лучше всего они отвечают на движение светлой полосы по темному фону или наоборот. Как правило, у нейронов с простым типом рецептивного поля существует предпочитаемое направление движения, реакция на которое выражена сильнее всего.

Нейроны с рецептивным полем сложного типа лучше отвечают на полоску или решетку, оптимальным образом ориентированную относительно сетчатки (вертикальное, горизонтальное или наклонное положение).

Нейроны сверхсложного типа могут отвечать на несколько положений полосы (линии), ее повороты на определенный угол, на угол, образуемый двумя линиями, на кривизну контура или более сложные пространственные характеристики зрительного изображения. Предполагается, что существует конвергенция нейронов с простыми рецептивными полями на нейроны более высокого порядка. В 17-м поле коры встречается больше нейронов с простыми, а в 18-м и 19-м – со сложными и сверхсложными рецептивными полями.

На основании этого Д. Хьюбел и Т. Визель сформулировали детекторную теорию переработки зрительной информации. Суть ее состоит в том, что нейроны с простыми рецептивными полями, являясь детекторами элементарных признаков зрительного изображения (например, ориентации линий), конвергируют с нейронами более высокого уровня, которые в результате этой конвергенции приобретают более сложные свойства. Таким образом, существует иерархия нейронов-детекторов, на верхних ступенях которой находятся детекторы наиболее сложных признаков зрительного изображения. Однако, как было показано в дальнейшем, такого рода нейроны, ответственные за опознание целостных зрительных образов, расположены за пределами собственно зрительной коры – в первую очередь, в нижневисочной области. Таким образом, процесс зрительного восприятия не заканчивается в проекционных областях, а продолжается на более сложных уровнях ассоциативных корковых зон.

Альтернативой детекторной теории является пространственно-частотная гипотеза переработки зрительной информации, предложенная английским исследователем Ф. Кемпбеллом и отечественным физиологом В.Д. Глезером. Согласно этой гипотезе, нейроны зрительной коры определяют две основные характеристики зрительного изображения – ориентацию стимула (полосы, решетки) и его пространственную частоту. При этом нейроны разных участков коры «настроены» на стимулы разной пространственной ориентации и пространственной частоты. Таким образом, в 17-м поле зрительной коры создается «мозаика» из возбужденных и невозбужденных нейронов, изоморфно отображающая пространственное распределение возбужденных и заторможенных рецепторов сетчатки глаза. Нейроны вторичной и третичной зрительных областей (18-е и 19-е поля) используют информацию, поставляемую из первичной коры (17-е поле), для формирования более крупных подобразов зрительного изображения.

Таким образом, на уровне зрительной коры осуществляется тонкий, дифференцированный анализ наиболее сложных признаков зрительного сигнала (выделение контуров, очертаний, формы объекта, локализации, перемещений в пространстве и т.д.). На уровне вторичной и третичной областей, по-видимому, осуществляется наиболее сложный интегративный процесс, подготавливающий организм к опознанию зрительных образов и формированию целостной сенсорно-перцептивной картины мира. Формирование же целостных зрительных образов, их опознание и оценка биологической значимости осуществляется в ассоциативных областях в первую очередь, заднетеменной и нижневисочной.

Ассоциативные зоны коры. В нейрофизиологических исследованиях было показано, что нейроны нижневисочной коры (НВК) лучше всего отвечают на целостные образы (например, на геометрические фигуры). При этом можно выделить клетки, отвечающие только на одну фигуру (например, круг), или реагирующие на несколько различных изображений (круг, треугольник, крест и квадрат). Ответы нейронов, как правило, инвариантны к преобразованиям фигур, т.е. не зависят от размера, поворота, цвета изображений, освещенности и т.д.

В целом считают, что нейроны НВК отвечают на сенсорное значение зрительного стимула независимо от его значимости для моторного поведения. При этом для НВК важны не отдельные характеристики стимула, а их определенные сочетания. Очевидно, НВК осуществляет классификацию изображений в соответствии с конкретной задачей, стоящей перед животными и человеком. При повреждении этой области у человека нарушаются процессы опознания объектов и памяти.

Заднетеменная кора (ЗТК) создает нейронную конструкцию (модель) окружающего пространства, описывая расположение и перемещение объектов в этом пространстве по отношению к телу, а также положение и движение тела по отношению к окружающему пространству. Другими словами, в ЗТК происходит переработка информации, описывающей соотношения между внутренними и наружными координатными системами. Имеются также данные о связи нейронов ЗТК с произвольным вниманием к тому или иному зрительно воспринимаемому объекту.

При двусторонних повреждениях теменной области у человека возникают нарушения зрительного восприятия пространства. Такие больные не могут оценить пространственные преобразования фигур, у них нарушена топографическая ориентировка и т. д. Это свидетельствует о важной роли ЗТК в восприятии пространства и пространственных соотношений между объектами, находящимися в поле зрения.

Опознание образов осуществляется содружественной работой НВК и ЗТК. Если первая осуществляет опознание отдельных элементов (фрагментов) целостной зрительной ситуации, инвариантно к их пространственным преобразованиям, то вторая формирует целостную картину окружающего мира.

Лобная кора благодаря своим многочисленным связям со структурами памяти и структурами лимбической системы осуществляет оценку значимости стимула для организма и планирование соответствующего поведенческого акта.

Световая чувствительность и адаптация

Световая чувствительность характеризует способность зрительной системы воспринимать излучение света. Наибольшую световую чувствительность глаз имеет в темноте. Минимальное количество световой энергии, необходимое в этих условиях для возникновения ощущения света, называют абсолютным порогом. Фоторецептор способен возбуждаться при действии одного-двух квантов света, однако, для возникновения светового ощущения необходима суммация возбуждения от нескольких рецепторов. В естественных условиях зрительная система крайне редко работает на пределе, т.е. в околопороговой области, и основное значение для зрения имеет контрастная чувствительность, т.е. чувствительность в условиях световой адаптации. Если тестовое пятно находится на освещенном фоне, то минимальную разность яркости пятна В c и фона В f , которая воспринимается наблюдателем как едва заметное различие, называют разностным, или дифференциальным, порогом (∆ В) : ∆В = │В c – В f │. Отношение разностного порога к освещенности фона называют пороговым контрастом или относительным дифференциальным порогом . Величина относительного дифференциального порога безразмерная и показывает, насколько нужно изменить величину тестового стимула по отношению к фону, чтобы уловить едва заметную разницу между ними. Например, если относительный дифференциальный порог равен 0,03, то это означает, что тестовый стимул должен отличаться от фона на 3%. Согласно закону Бугера-Вебера, ∆В/В f = const , или ∆В = k∙В f (разностный порог растет пропорционально освещенности). Однако этот закон справедлив лишь для среднего диапазона интенсивностей и нарушается при малых и больших значениях стимула.

Большое значение для световой чувствительности зрительной системы имеет ее способность к адаптации , т.е. к функциональной перестройке, позволяющей работать в оптимальном режиме при данном уровне освещенности. Различают темновую и световую адаптацию. Темновая адаптация характеризуется максимальным повышением световой чувствительности (снижением абсолютных порогов) зрительной системы для восприятия светового раздражителя в абсолютной темноте. Световая адаптация характеризует чувствительность системы при разных уровнях освещенности.

Темновая адаптации включает в себя изменение палочковой и колбочковой чувствительности. Палочковая адаптация завершается через 7–8 минут, изменения палочковой чувствительности происходят примерно в течение 30 мин. Механизм темновой адаптации с одной стороны состоит в постепенном восстановлении зрительного пигмента в темноте, с другой – в перестройка рецептивных полей в передающей системе рецептор – биполяр – ганглиозная клетка. Так, обнаружено, что в процессе темновой адаптации уменьшается вплоть до полного исчезновения тормозная «кайма» на периферии рецептивного поля ганглиозной клетки, а следовательно, увеличивается ее световая чувствительность.

Световая чувствительность при световой адаптации понижается при переходе от меньшей освещенности к большей. Она протекает быстрее, чем темновая адаптация, и составляет примерно 1–3 минуты.

Острота зрения

Острота зрения характеризует предельную пространственную разрешающую способность зрительной системы, т.е. способность глаза различать две близко расположенные точки как раздельные. Острота зрения определяется как оптикой глаза, так и его нейронными механизмами.

При измерении остроты зрения чаще всего пользуются методом обнаружения, когда предъявляют светлый тест-объект на темном фоне или темный на светлом. Так, наблюдатель должен опознать буквы разного углового размера, определить наклон решетки, состоящей из параллельных полос, и т.д. Наибольшее распространение получили кольца Ландольта, в которых требуется определить положение разрыва на кольце. За количественную меру остроты зрения принимается величина, обратная углу зрения, минимального по размеру, но еще воспринимаемого объекта.

Острота зрения зависит от ряда факторов: освещенности, контрастности фона и текста, состояния и адаптации рецепторного аппарата, оптического аппарата глаза. Она обусловлена также перестройкой рецептивных полей ганглиозных клеток сетчатки. При повышении уровня освещенности размер центра рецептивного поля уменьшается, а влияние тормозной периферии нарастает. Можно предположить, что когда изображение двух точек попадает в два смежных рецептивных поля, разделенных тормозной периферией, вероятность их различения выше, чем в том случае, когда такая периферия отсутствует.

Острота зрения является также функцией положения тест-объекта на сетчатке (или удаления последнего от центральной ямки). Чем дальше от центра производится измерение, тем острота зрения меньше.

Движения глаз и их роль в зрении

Движения глаз играют весьма важную роль в зрительном восприятии. Даже в том случае, когда наблюдатель фиксирует взглядом неподвижную точку, глаз не находится в покое, а все время совершает небольшие движения, которые являются непроизвольными. Движения глаз выполняют функцию дезадаптации при рассматривании неподвижных объектов. Другая функция мелких движений глаза – удерживание изображения в зоне ясного видения.

В реальных условиях работы зрительной системы глаза все время перемещаются, обследуя наиболее информативные участки поля зрения. При этом одни движения глаз позволяют рассматривать предметы, расположенные на одном удалении от наблюдателя, например, при чтении или рассматривании картины, другие – при рассматривании объектов, находящихся на разном удалении от него. Первый тип движений – это однонаправленные движения обоих глаз, в то время как второй осуществляет сведение или разведение зрительных осей, т.е. движения направлены в противоположные стороны.

Показано, что перевод глаз с одних объектов на другие определяется их информативностью. Взор не задерживается на тех участках, которые содержат мало информации, и в то же время длительно фиксирует наиболее информативные участки (например, контуры объекта). Эта функция нарушается при поражении лобных долей. Движение глаз обеспечивает восприятие отдельных признаков предметов, их соотношение, на основе чего формируется целостный образ, хранящийся в долговременной памяти.

Цветовое зрение

Восприятие цвета обусловлено работой двух механизмов. Первичным является фоторецепторный механизм, основанный на существовании рецепторов, избирательно реагирующих на разные участки спектра. В сетчатке были обнаружены три типа колбочек с максимумами поглощения в различных областях спектра (синий, зеленый и красный).

В то же время в психологии и физиологии описан ряд фактов, которые невозможно объяснить, основываясь на фоторецепторном механизме. Такими примерами могут служить феномены одновременного и последовательного контраста. Одновременный контраст заключается в изменении цветового тона в зависимости от фона, на котором предъявляется тот или иной тестовый стимул. Например, серое пятно на красном фоне приобретает зеленоватый оттенок, на желтом – синеватый и т.д. Феномен последовательного контраста состоит в том, что если достаточно долго смотреть на окрашенную в определенный цвет поверхность (например, красную), а затем перевести взор на белую, то она приобретает оттенок оппонентного цвета (в данном случае – зеленоватый). Здесь вступает в работу центральный механизм. Суть его заключается в том, что нейроны ганглиозных клеток, НКТ и зрительной коры обладают цветооппонентными рецептивными полями, т.е. центр рецептивного поля активируется одним цветом, а его периферия – другим, противоположным (оппонентным). Это обусловлено особенностями их рецептивных полей, включающих возбуждающие и тормозные связи с разными типами колбочек. Описаны две цветооппонентные системы: красно-зеленая, желто-синяя.

Таким образом, восприятие цвета обусловлено работой двух разных механизмов, работающих на разных уровнях зрительной системы.

Стереоскопическое зрение

Стереоскопическое зрение позволяет оценить глубину пространства, т.е. относительную удаленность объектов в поле зрения. Оно обусловлено неодинаковым изображением одного и того же объекта на сетчатках обоих глаз. Поскольку глаза расположены на определенном расстоянии друг от друга, то они воспринимают объект под разным углом (так называемый бинокулярный параллакс), поэтому изображения на правой и левой сетчатке будут несколько отличаться друг от друга. В этом легко убедиться, по очереди закрывая то один глаз, то другой. Глазные оси были бы строго параллельны друг другу только в том случае, если бы фиксируемый объект находился на бесконечном удалении от наблюдателя. По мере приближения объекта он будет восприниматься как объемный, а глазные оси будут сходиться. Наконец, на очень близком расстоянии возникает двоение изображения. Иначе говоря, существует определенная зона видения, в пределах которой объект кажется объемным. Она выражается в угловых минутах. Ее нижняя граница составляет около 2 угл. мин. Это угол зрения, при котором две точки для наблюдателя сливаются в одну, т.е. явление глубины (или стереопсиса) исчезает. На практике эту границу достаточно легко определить: это расстояние, при котором глаза другого человека воспринимаются как одно изображение, что в среднем составляет около 6 км. Верхней границей стереопсиса является угол зрения, составляющий около 10 угл. град., за пределами этой границы изображение начинает двоиться.

Нейрофизиологические механизмы стереоскопического зрения на сегодняшний день изучены не до конца. Показано, однако, что основную роль в возникновении стереопсиса играет характер передачи изображения от сетчатки в высшие центры зрительной системы (рис 3.).

Как известно, у человека в области хиазмы осуществляется неполный перекрест волокон зрительного нерва – волокна от внутренних половин сетчаток перекрещиваются и идут в НКТ и зрительную кору противоположного полушария. Волокна от наружных половин сетчаток идут без перекреста. Таким образом, в каждое полушарие приходит информация от противоположной половины поля зрения. Это и является физиологической основой стереоскопического зрения.

Вопросы и задания для самоконтроля

1. Какие структуры глаза относятся к его оптической системе, какова их роль в зрительном восприятии?

2, Рассмотрите строение сетчатки. Какие из элементов сетчатки способны генерировать потенциал действия?

3. Назовите функциональные отличия фоторецепторов.

4. Какую роль выполняют горизонтaльные и амакриновые клетки?

5. Что является причиной возникновения рецепторного потенциала в фоторецепторах?

6. Kaкaя информация кодируется нейронами наружного коленчатого тела?

7. Какова функция передних холмов в переработке зрительной информации?

8. Чем детекторная теория зрительного восприятия отличается от пространственно-частотной теории?

9. Какую функцию выполняют нижневисочнaя и заднетеменнaя кора?

10. Как изменяется соотношение центра и периферии рецептивного поля ганглиозной клетки при темновой и световой адаптации?

11. От каких факторов зависит острота зрения?

12. Какую роль в зрительном восприятии играют движения глаз?

13. Oпишите основные механизмы цветового зрения.

14. Что лежит в основе стереопсиса?

1 ФИЗИОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ЗРИТЕЛЬНОЙ СЕНСОРНОЙ СИСТЕМЫ

1.1 Основные показатели зрения

1.2 Психофизические характеристики света

1.3 Периферический отдел зрительной системы

2 СОМАТОВИСЦЕРАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ

2.1 Психофизика кожной механорецепции

2.2 Кожные механорецепторы

2.3 Психофизика терморецепции

2.4 Терморецепторы

2.5 Висцеральная чувствительность

2.6 Проприоцепция

2.7 Функциональный и анатомический обзор центральной соматосенсорной системы

2.8 Передача соматовисцеральной информации в спинном мозгу

2.9 Соматосенсорные функции ствола мозга

2.10 Таламус

2.11 Соматосенсорные проекционные области в коре

2.12 Контроль афферентного входа в соматосенсорной системе

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


Зрительная система (зрительный анализатор) представляет собой совокупность защитных, оптических, рецепторних и нервных структур, воспринимающих и анализирующих световые раздражители. В физическом смысле свет - это электромагнитное излучение с различными длинами волн - от коротких (красная область спектра) до длинных (синяя область спектра).

Способность видеть объекты связана с отражением света от их поверхности. Цвет зависит от того, какую часть спектра поглощает или отражает предмет. Главные характеристики светового стимула - его частота и интенсивность. Частота (величина, обратная длине волны) определяет окраску света, интенсивность - яркость. Диапазон интенсивностей, воспринимаемых глазом человека - огромен - порядка 10 16 . Через зрительную систему человек получает более 80% информации о внешнем мире.

1.1 Основные показатели зрения

Зрение характеризуют следующие показатели:

1) диапазон воспринимаемых частот или длин волн света;

2) диапазон интенсивностей световых волн от порога восприятия до болевого порога;

3) пространственная разрешающая способность - острота зрения;

4) временная разрешающая способность - время суммации и критическая частота мельканий;

5) порог чувствительности и адаптация;

6) способность к восприятию цветов;

7) стереоскопия - восприятие глубины.

Психофизические эквиваленты частоты и интенсивности света представлены в таблицах 1.1 и 1.2.

Таблица 1.1. Психофизические эквиваленты частоты света

Таблица 1.2. Психофизические эквиваленты интенсивности света


Для характеристики восприятия света важны три качества: тон, насыщенность и яркость. Тон соответствует цвету и меняется с изменением длины волны света. Насыщенность означает количество монохроматического света, добавление которого к белому свету обеспечивает получение ощущения, соответствующего длине волны добавленного монохроматического света, содержащего только одну частоту (или длину волны). Яркость света связана с его интенсивностью. Диапазон интенсивностей света от порога восприятия до величин, вызывающих болевые ощущения, огромен - 160 дБ. Воспринимаемая человеком яркость объекта зависит не только от интенсивности, но и от окружающего его фона. Если фигура (зрительный стимул) и фон освещены одинаково, то есть между ними нет контраста, яркость фигур возрастает с увеличением физической интенсивности освещения. Если контраст между фигурой и фоном увеличивается, яркость воспринимаемой фигуры уменьшается с увеличением освещенности.

Пространственная разрешающая способность - острота зрения - минимальное различимое глазом угловое расстояние между двумя объектами (точками). Острота определяется с помощью специальных таблиц из букв и колец и измеряется величиной I/a, где а - угол, соответствующий минимальному расстоянию между двумя соседними точками разрыва в кольце. Острота зрения зависит от общей освещенности окружающих предметов. При дневном свете она максимальна, в сумерках и в темноте острота зрения падает.

Временные характеристики зрения описываются двумя основными показателями - временем суммации и критической частотой мельканий.

Зрительная система обладает определенной инерционностью: после включения стимула необходимо время для появления зрительной реакции (оно включает время, требующееся для развития химических процессов в рецепторах). Исчезает зрительное впечатление не сразу, а лишь через некоторое время после прекращения действия на глаз света или изображения, поскольку для восстановления зрительного пигмента сетчатке глаза также требуется время. Существует эквивалентность между интенсивностью и длительностью действия света на глаз. Чем короче зрительный стимул, тем большую интенсивность он должен иметь, чтобы вызывать зрительное ощущение. Таким образом, для возникновения зрительного ощущения имеет значение суммарное количество световой энергии. Эта связь между длительностью и интенсивностью сохраняется лишь при коротких длительностях стимулов - до 20 мс. Для более длительных сигналов (от 20 мс до 250 мс) полная компенсация пороговой интенсивности (яркости) за счет длительности уже не наблюдается. Всякая зависимость между способностью к обнаружению света и его длительностью исчезает после того, как продолжительность стимула достигает 250 мс, а при больших длительностях решающей становится интенсивность. Зависимость пороговой интенсивности света от длительности его воздействия называется временной суммацией. Этот показатель используется для оценки функции зрительной системы.

Зрительная система сохраняет следы светового раздражения в течение 150-250 мс после его включения. Это свидетельствует о том, что глаз воспринимает прерывистый свет, как непрерывный, при определенных интервалах между вспышками. Частота вспышек, при которой ряд последовательных вспышек воспринимается как непрерывный свет, называется критической частотой мельканий. Этот показатель неразрывно связан с временной суммацией: процесс суммации обеспечивает плавное слияние последовательных изображений в непрерывный поток зрительных впечатлений. Чем выше интенсивность световых вспышек, тем выше критическая частота мельканий. Критическая частота мельканий пи средней интенсивности света составляет 16-20 в 1 с.

Порог световой чувствительности - это наименьшая интенсивность света, которую человек способен увидеть. Она составляет 10 -10 - 10 -11 эрг/с. В реальных условиях на величину порога существенно влияет процесс адаптации - изменения чувствительности зрительной системы в зависимости от исходной освещенности. При низкой интенсивности света в окружающей среде развивается темповая адаптация зрительной системы. По мере развития темновой адаптации чувствительность зрения возрастает. Длительность полной темновой адаптации составляет 30 мин. При увеличении освещенности окружающей среды происходит световая адаптация, которая завершается за 15-60 с. Различия темновой и световой адаптации связаны со скоростью химических процессов распада и синтеза пигментов сетчатки.

Восприятие света зависит от длины волны света, попадающего в глаз. Однако, такое утверждение справедливо лишь для монохроматических лучей, то есть лучей с одной длиной волны. Белый свет содержит все длины световых волн. Существует три основных цвета: красный - 700 нм, зеленый - 546 нм и синий - 435 нм. В результате смешивания основных цветов можно получить любой цвет. Объясняют цветовое зрение на основе предположения о существовании в сетчатке глаза фоторецепторов трех различных типов, чувствительных к различным длинам волн света, соответствующих основным частотам спектра (синий, зеленый, красный).

Нарушение восприятия цвета называется цветовой слепотой, или дальтонизмом, по имени Дальтона, который впервые описал этот дефект зрения на основе собственного опыта. Дальтонизмом страдают, в основном, мужчины (около 10%) в связи с отсутствием определенного гена в Х-хромосоме. Известны три типа нарушений светового зрения: протанопия - отсутствие чувствительности к красному цвету, дейтеранопия - отсутствие чувствительности к зеленому цвету и тританопия - отсутствие чувствительности к синему цвету. Полная цветовая слепота - монохроматия - встречается исключительно редко.

Бинокулярное зрение - участие обоих глаз в формировании зрительного образа - создается за счет объединения двух монокулярных изображений объектов, усиливая впечатление пространственной глубины. Поскольку глаза расположены в разных "точках" головы справа и слева, то в изображениях, фиксируемых разными глазами, имеются небольшие геометрические различия (диспарантность), которые тем больше, чем ближе находится рассматриваемый объект. Диспарантность двух изображений лежит в основе стереоскопии, то есть восприятия глубины. Когда голова человека находится в нормальном положении, возникают отклонения от точно соответствующих проекций изображений в правом и левом глазах, так называемая диспарантность рецептивных полей. Она уменьшается с увеличением расстояния между глазами и объектом. Поэтому на больших расстояниях между стимулом и глазом глубина изображения не воспринимается.

Снаружи глаз виден как сферическое образование, прикрытое верхним и нижним веком и состоящее из склеры, коньюктивы, роговицы, радужной оболочки. Склера представляет собой соединительную ткань белого цвета, окружающую глазное яблоко. Коньюктива - прозрачная ткань, снабженная кровеносными сосудами, которая на переднем полюсе глаза соединяется с роговицей. Роговица является прозрачным защитным наружным образованием, кривизна поверхности которого определяет особенности преломления света. Так, при неправильной кривизне роговицы возникает искажение зрительных изображений, называемое астигматизмом. Позади роговицы находится радужная оболочка , цвет которой зависит от пигментации составляющих ее клеток и их распределения. Между роговицей и радужной оболочкой находится передняя камера глаза, наполненная жидкостью - "водянистой влагой" . В центре радужной оболочки находится зрачок круглой формы, пропускающий внутрь глаза свет после его прохождения через роговицу.

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему. Основными функциями органа зрения являются центральное, периферическое, цветовое и бинокулярное зрение, а также светоощущение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим.

Строение зрительной системы

Зрительная система состоит из:

* Глазного яблока;

* Защитного и вспомогательного аппарата глазного яблока (веки, конъюнктива, слезный аппарат, глазодвигательные мышцы и фасции глазницы);

* Системы жизнеобеспечения органа зрения (кровоснабжение, выработка внутриглазной жидкости, регуляция гидро и гемодинамики);

* Проводящих путей – зрительного нерва, зрительного перекреста и зрительного тракта;

* Затылочных долей коры больших полушарий головного мозга.

Глазное яблоко

Глаз имеет форму сферы, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично укрыто от возможного повреждения.

Глаз человека имеет не совсем правильную шаровидную форму. У новорожденных его размеры равны (в среднем) по сагиттальной оси 1, 7 см, у взрослых людей 2, 5 см. Масса глазного яблока новорожденного находится в пределах до 3 г, взрослого человека - до 7-8 г.

Особенности строения глаз у детей

У новорожденных глазное яблоко относительно большое, но короткое. К 7-8 годам устанавливается окончательный размер глаз. Новорожденный имеет относительно большую и более плоскую, чем у взрослых, роговицу. При рождении форма хрусталика сферичная; в течение всей жизни он растет и становится более плоским. У новорожденных в строме радужки пигмента мало или совсем нет. Голубоватый цвет глазам придает просвечивающий задний пигментный эпителий. Когда пигмент начинает появляться в радужке, она приобретает свой собственный цвет.

Строение глазного яблока

Глаз располагается в глазнице и окружен мягкими тканями (жировая клетчатка, мышцы, нервы и пр.). Спереди он покрыт конъюнктивой и прикрыт веками.

Глазное яблоко состоит из трех оболочек (наружной, средней и внутренней) и содержимого (стекловидного тела, хрусталика, а также водянистой влаги передней и задней камер глаза).

Наружная, или фиброзная, оболочка глаза представлена плотной соединительной тканью. Она состоит из прозрачной роговицы в переднем отделе глаза и белого цвета непрозрачной склеры. Обладая эластическими свойствами, эти две оболочки образуют характерную форму глаза.

Функция фиброзной оболочки – проведение и преломление лучей света, а также защита содержимого глазного яблока от неблагоприятных внешних воздействий.

Роговица – прозрачная часть (1/5) фиброзной оболочки. Прозрачность роговицы объясняется уникальностью ее строения, в ней все клетки расположены в строгом оптическом порядке и в ней отсутствуют кровеносные сосуды.

Роговица богата нервными окончаниями, поэтому она очень чувствительна. Воздействие неблагоприятных внешних факторов на роговицу вызывает рефлекторное сжимание век, обеспечивая защиту глазного яблока. Роговица не только пропускает, но и преломляет световые лучи, она имеет большую преломляющую силу.

Склера – непрозрачная часть фиброзной оболочки, которая имеет белый цвет. Ее толщина достигает 1 мм, а самая тонкая часть склеры расположена в месте выхода зрительного нерва. Склера состоит в основном из плотных волокон, которые придают ей прочность. К склере крепятся 6ть глазодвигательных мышц.

Функции склеры – защитная и формообразующая. Сквозь склеру проходят многочисленные нервы и сосуды.

Сосудистая оболочка , средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок . Функция этой оболочки – ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением – при низкой.

За радужной оболочкой расположен хрусталик , похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена цилиарная (ресничнвя) мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов.

Когда эта мышца расслаблена, прикрепленный к цилиарному телу ресничный поясок натягивается и хрусталик уплощается. Его кривизна, а следовательно и преломляющая сила, минимальна. В таком состоянии глаз хорошо видит удаленные объекты.

Чтобы рассмотреть предметы, расположенные вблизи, цилиарная мышца сокращается, а напряжение ресничного пояска ослабевает, так что хрусталик становится более выпуклым, следовательно, более сильно преломляющим.

Это свойство хрусталика менять свою преломляющую силу луча, называется аккомодацией .

Внутренняя оболочка глаза представлена сетчаткой – высо- кодифференцированной нервной тканью. Сетчатка глаза – передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование.

Что интересно, в процессе эмбрионального развития сетчатка глаза формируется из той же группы клеток, что головной и спинной мозг, поэтому справедливо утверждение, что поверхность сетчатки является продолжением мозга.

В сетчатке свет преобразуется в нервные импульсы, которые по нервным волокнам передаются в мозг. Там они анализируются, и человек воспринимает изображение.

Главным слоем сетчатки является тонкий слой светочувствительных клеток – фоторецепторов . Они бывают двух видов: отвечающие на слабый свет (палочки) и сильный (колбочки).

Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им человек видит предметы на периферии поля зрения, в том числе при низкой освещенности.

Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом желтом пятне . Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. Желтым пятном человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное и цветное зрение.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки – на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных “помех” в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы.

В конечном счете, вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию – заднюю кору, где и происходит формирование зрительного образа.

Что интересно, лучи света, проходя сквозь хрусталик, преломляются и переворачиваются, из-за чего на сетчатке возникает перевернутое уменьшенное изображение предмета. Также картинка с сетчатки каждого глаза поступает в головной мозг не целиком, а словно разрезанная пополам. Однако мы видим мир нормально.

Следовательно, дело не столько в глазах, сколько в мозге. В сущности, глаз – это просто воспринимающий и передающий инструмент. Клетки мозга, получив перевернутое изображение, переворачивают его снова, создавая истинную картину окружающего мира.

Содержимое глазного яблока

Содержимое глазного яблока – стекловидное тело, хрусталик, а также водянистая влага передней и задней камер глаза.

Стекловидное тело по весу и объему составляет примерно 2/3 глазного яблока и более чем на 99% состоит из воды, в которой растворено небольшое количество белка, гиалуроновой кислоты и электролитов. Это прозрачное бессосудистое студенистое образование, заполняющее пространство внутри глаза.

Стекловидное тело достаточно прочно связано с цилиарным телом, капсулой хрусталика, а также с сетчаткой вблизи зубчатой линии и в области диска зрительного нерва. С возрастом связь с капсулой хрусталика ослабевает.

Вспомогательный аппарат глаза

К вспомогательному аппарату глаза относят глазодвигательные мышцы, слезные органы, а также веки и конъюнктиву.

Глазодвигательные мышцы

Глазодвигательные мышцы обеспечивают подвижность глазного яблока. Их шесть: четыре прямых и две косых.

Прямые мышцы (верхняя, нижняя, наружная и внутренняя) начинаются от сухожильного кольца, расположенного у вершины орбиты вокруг зрительного нерва, и прикрепляются к склере.

Верхняя косая мышца начинается от надкостницы глазницы сверху и кнутри от зрительного отверстия, и, направляясь несколько кзади и книзу, прикрепляется к склере.

Нижняя косая мышца начинается от медиальной стенки орбиты позади нижней глазничной щели и прикрепляется к склере.

Кровоснабжение глазодвигательных мышц осуществляется мышечными ветвями глазной артерии.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение).

Точная и слаженная работа мышц глаза позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно. В случае нарушения функций мышц (например, при парезе или параличе одной из них) возникает двоение или же зрительная функция одного из глаз подавляется.

Также считается, что глазодвигательные мышцы участвуют в процессе подстройки глаза к процессу видения (аккомодации). Они сжимают или растягивают глазное яблоко так, чтобы лучи, поступающие от обозреваемых объектов, будь то вдали или вблизи, могли попасть точно на сетчатку. При этом хрусталик обеспечивает более тонкую настройку.

Кровоснабжение глаза

Мозговая ткань, осуществляющая проведение нервных импульсов от сетчатки до зрительной коры, а также зрительная кора, в норме почти повсеместно имеют хорошее обеспечение артериальной кровью. В кровоснабжении этих мозговых структур участвуют несколько крупных артерий, входящих в состав каротидных и вертебрально-базилярной сосудистых систем.

Артериальное кровоснабжение головного мозга и зрительного анализатора осуществляется из трех основных источников - правой и левой внутренней и наружной сонных артерий и непарной базилярной артерии. Последняя образуется в результате слияния правой и левой позвоночных артерий, расположенных в поперечных отростках шейных позвонков.

Почти вся зрительная кора и отчасти кора прилежащих к ней теменной и височной долей, а также затылочные, среднемозговые и мостовые глазодвигательные центры снабжаемых кровью за счет вертебро-базилярного бассейна (вертебра – в переводе с латинского – позвонок).

В связи с этим нарушения кровообращения в вертебрально-базилярной системе может стать причиной нарушения функций как зрительной, так и глазодвигательной систем.

Вертебробазилярная недостаточность, или синдром позвоночной артерии, – это состояние, при котором снижается кровоток в позвоночных и базилярной артериях. Причиной этих нарушений могут быть сдавливание, повышение тонуса позвоночной артерии, в т.ч. в следствие сдавливания костной тканью (остеофиты, грыжа межпозвоночного диска, подвывих шейных позвонков и др.).

Как видите, наши глаза – это исключительно сложный и удивительный дар природы. Когда все отделы зрительного анализатора работают гармонично и без помех, окружающий нас мир мы видим ясно.

Относитесь к своим глазам бережно и внимательно!

Основные понятия и ключевые термины: ЗРИТЕЛЬНАЯ СЕНСОРНАЯ СИСТЕМА. ГЛАЗ ЧЕЛОВЕКА.

Вспомните! Что такое сенсорные системы?

Подумайте!

Человеческий глаз - один из самых сложных органов чувств, который получает световую информацию, а затем передаёт её в мозг. Эта информация и является основой для формирования зрительных ощущений. А какой свет воспринимает глаз человека?

Какое значение имеет зрительная сенсорная система для человека?

ЗРИТЕЛЬНАЯ СЕНСОРНАЯ СИСТЕМА -

это функциональная система анатомических образований, которая специализируется на восприятии световых раздражений и формировании зрительных ощущений. Человеческий глаз (лат. oculus) способен воспринимать только видимый свет из спектра электромагнитного излучения в диапазоне волн от 380 до 770 нм.

С помощью зрительной сенсорной системы человек получает более 90 % информации об окружающей среде. Это в 30 раз больше информации, воспринимаемой слухом. У человека, по сравнению с другими животными, зрительная система более совершенна. Благодаря развитой зрительной зоне коры полушарий человек может учиться лучше воспринимать зрительную информацию, накапливать её и запоминать для применения в будущем.

Таблица 28. ОТДЕЛЫ ЗРИТЕЛЬНОЙ СЕНСОРНОЙ СИСТЕМЫ

Характеристика

Перифериче

Преобразование света в нервные импульсы осуществляют фоторецепторы (палочки и колбочки), расположенные в сетчатке глаза. Эти клетки содержат зрительные пигменты, которые воспринимают и преобразуют свет

Проводнико

Проведение импульсов осуществляют правый и левый зрительные нервы, волокна которых перекрещиваются перед входом в мозг

Центральный

Обработка зрительной информации происходит в следующих зонах: а) в подкорковых центрах таламуса (зрительные бугры промежуточного мозга) и среднего мозга; б) зрительной зоне затылочной доли коры полушарий

Из различных признаков и свойств предметов окружающего мира с помощью зрительной сенсорной системы отображаются цвет, форма,

размеры предметов и определяются расстояние, расположение, объёмность предметов. Большую роль играет система в формировании зрительных ощущений и эмоций. Именно эти проявления вызывают у человека яркие и глубокие эмоции, когда она любуется красотой природы или произведением искусства. Зрительная система участвует почти во всех видах человеческой деятельности. С помощью зрения формируется речь человека и обеспечивается общение.

Итак, основной функцией зрительной сенсорной системы является познавательная, благодаря которой человек получает наибольшую часть информации об окружающем мире.

Как функции глаза взаимосвязаны с его строением?

ГЛАЗ ЧЕЛОВЕКА - орган чувств, который обеспечивает зрение. Это чувствительное образование имеет шарообразную форму, что способствует его движениям в пределах глазницы черепа (орбиты). Состоит орган зрения человека из двух частей: глазного яблока и вспомогательного аппарата. Глаз человека является периферической частью зрительной сенсорной системы и содержит внутри зрительные рецепторы (фоторецепторы). Эти клетки называются палочками и колбочками, их много, они живые и нуждаются в защите и питании. Кроме того, глаз осуществляет проведение световых лучей к внутренней оболочке глаза - сетчатке, где расположены эти зрительные чувствительные клетки. Важное значение для глаза имеют внешние и внутренние мышцы, выполняющие движения всего глазного яблока, сужение зрачка, изменение кривизны хрусталика.


Таблица 29. СТРОЕНИЕ ГЛАЗА ЧЕЛОВЕКА

Глазное яблоко

Вспомогательный

Оболочки

Внутреннее ядро

Веки (верхнее и нижнее) с ресницами Слёзный аппарат Конъюнктива Глазодвигательные мышць

I. Внешняя оболочка: склера, роговица

II. Средняя оболочка: собственно сосудистая оболочка, радужка со зрачком, ресничное тело

III. Сетчатка (имеет жёлтое и слепое пятна)

Хрусталик Влага передней и задней камер глаза Стекловидное тело

Функции: зашита и питание глазного яблока, световосприятие

Функции: питание и светопроводимость

Функции: зашита и движения глаз

Ил. 95. Строение глазного яблока человека: 1 - конъюнктива;

2 - ресничная мышца; 3 - радужка;

4 - роговица; 5 - хрусталик;

6 - передняя камера; 7 - задняя камера; 8 - сосудистая оболочка;

9 - склера; 10 - зрительный нерв;

11 - слепое пятно; 12 - центральная ямка; 13 - жёлтое пятно;

14 - стекловидное тело; 15 - сетчатка

Рассмотрим строение глаза во взаимосвязи с функциями:

Белковая оболочка (склера) - внешняя оболочка с коллагеновыми волокнами, защищает глаз и сохраняет его форму;

Роговица - прозрачная часть белковой оболочки, пропускает и преломляет свет;

Радужная оболочка - передняя часть сосудистой оболочки с пигментом, который определяет цвет глаз;

Зрачок - отверстие в радужке, которое может изменять диаметр с помощью гладких мышц, поэтому регулирует поступление света внутрь глаза;

Ресничное тело - образование сосудистой оболочки, имеющее ресничную мышцу и связки, поэтому может изменять форму хрусталика;

Собственно сосудистая оболочка - оболочка с густой сетью кровеносных сосудов, которая обеспечивает питание глаза;

Сетчатка - внутренняя световоспринимающая оболочка глазного яблока, которая содержит фоторецепторы и превращает световые раздражения в нервные импульсы;

Влага камер - прозрачная жидкость, которая заполняет переднюю и заднюю камеры глаза и обеспечивает питание хрусталика;

Хрусталик - прозрачное эластичное двояковыпуклое образование, которое может изменять свою форму, благодаря чему обеспечивается фокусировка лучей света на сетчатке;

Стекловидное тело - прозрачная студенистая масса, заполняющая глазное яблоко и поддерживающая его форму и внутриглазное давление;

Жёлтое пятно - участок в центре сетчатки, где содержатся преимущественно колбочки, которая считается местом наилучшего видения;

Слепое пятно - место, где зрительный нерв выходит из сетчатки, лишено фоторецепторов и не воспринимает свет.

Как происходит защита глаза?

Глаз обеспечен вспомогательным аппаратом. Защитную функцию выполняют брови и веки с ресницами, а также слёзный аппарат. Он состоит из слёзной железы, расположенной во внешнем углу глаза, слёзного мешка и носослёзного канала. Слёзная жидкость увлажняет поверхность глазного яблока, смывает посторонние частицы и убивает бактерии, попавшие в глаз, поскольку содержит бактерицидное вещество - лизоцим. Внутренняя часть век покрыта соединительнотканной оболочкой - конъюнктивой, которая содержит дополнительные слёзные железы. Благодаря глазодвигательным мышцам глазное яблоко постоянно движется.

Итак, вспомогательный аппарат глаза включает брови, веки с ресницами, слёзный аппарат, конъюнктиву и глазодвигательные мышцы.


ДЕЯТЕЛЬНОСТЬ

Учимся познавать

Лабораторное исследование. ВЫЯВЛЕНИЕ СЛЕПОГО ПЯТНА НА СЕТЧАТКЕ ГЛАЗА

Цель: развивать исследовательские умения и умения объяснять результаты исследования.

Оборудование: карта для демонстрации слепого пятна на сетчатке глаза, плотная бумага.

Ход работы

1. Прикройте левый глаз рукой или плотной бумагой и начните рассматривать карту с рисунком, медленно приближая её к глазу. При этом смотрите только на левое изображение (плюс). На каком расстоянии от глаза исчезает правое изображение круга и почему?

2. То же самое проделайте с прикрытым правым глазом, но начните рассматривать правое изображение круга. На каком расстоянии от глаза исчезает левое изображение плюса и почему?

3. Итог работы.

Самостоятельная работа с иллюстрацией

Сопоставьте названия элементов строения глаза человека с их обозначениями: А - кровеносные сосуды сетчатки; Б - радужная оболочка; Е - верхняя глазодвигательная мышца; И 4 -зрачок; И 2 - ресничная мышца; И 3 - нижняя глазодвигательная мышца; И 4 - сетчатка; З - зрительный нерв; Л - хрусталик; Н - задняя камера глаза; С 1 - склера; С 2 - передняя камера глаза; Ц - стекловидное тело; Я - сосудистая оболочка.

В случае правильного сопоставления в табличке вы получите название термина, которым обозначают повышенную чувствительность организма к воздействию какого-то фактора среды.

РЕЗУЛЬТАТ

Вопросы для самоконтроля

1. Что такое зрительная сенсорная система? 2. Назовите части зрительного анализатора. 3. Что такое глаз человека? 4. Каковы функции глаза? 5. Что образует глазное яблоко? 6. Что такое вспомогательный аппарат глаза?

7. Какое значение имеет зрительная сенсорная система для человека? 8. Какие функции глаза взаимосвязаны с его строением? 9. Как обеспечивается защита глаза?

10. Докажите значение зрительного анализатора для жизнедеятельности организма человека.

Это материал учебника

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

КРАТКО - Зрительный анализатор – это совокупность оптических, вспомогательных и нейронных структур, воспринимающих и анализирующих световые сигналы в виде электромагнитного излучения определенного диапазона и дискретных частиц (фотонов), формирующих зрительные ощущения.

Благодаря тому, что два глаза у человека расположены практически на одной линии, человек обладает бинокулярным зрением. Благодаря бинокулярному зрению возможно стереоскопическое восприятие (глубина, объем, расстояние до предметов).

Фоторецепторы(палочки и колбочки) располагаются в сетчатке, которая также имеет достаточно сложное строение и представляет собой высокоорганизованную слоистую структуру, объединяющую не только рецепторы, но и ряд других нейронов. В ней происходит первичная обработка зрительных сигналов, преобразование их в нервные импульсы, передающиеся в центральные структуры.

Цветовое зрение – это способность зрительного анализатора реагировать на изменение длины волны света с формированием ощущения цвета. Существует две теории, объясняющие механизмы цветового зрения: трехкомпонентная теория и теория оппонентных, или контрастных, цветов. Первая верна на уровне палочек и колбочек, а вторая – на уровне других клеток сетчатки и подкорковых структур. Аномалиями цветовосприятия чаще страдают мужчины, т.к. ген, кодирующий белок зрительного фермента, сцеплен с непарной у них Х-хромосомой.

(ПОДРОБНО)Световая адаптация – повышение чувствительности зрения при переходе из темноты на свет. Это происходит быстрее, занимает этот процесс всего от 15 до 60 секунд.

Темновая адаптация – повышение чувствительности зрительной системы при переходе из ярко освещенного места в темное. Этот процесс достаточно длительный, может занять до 30 минут.

Порог световой чувствительности – минимальная интенсивность светового воздействия, вызывающая ощущение света (10-10–10-4 эрг/с). изменение чувствительности зрения в зависимости от исходной освещенности

Бинокулярное зрение –(способность одновременно чётко видеть изображение предмета обоими глазами) зрение двумя глазами с соединением получаемых ими изображений, позволяющим локализовать объекты по направлению и по относительной удаленности.

Острота зрения – это пространственная разрешающая способность зрительной системы. Это минимальное различимое глазом расстояние между двумя точками.

Критическая частота световых мельканий - при высокой частоте следования отдельных сигналов глаз воспринимает их как непрерывный сигнал. Он составляет примерно 16–20 Гц.

Орган зрения представляет собой глаз, включающий три различных по функциональному значению элемента:

глазное яблоко, в котором расположены световоспринимающий, светопреломляющий и светорегулирующий аппараты;

защитные приспособления – наружные оболочки глаза, слезный аппарат, ресницы, веки, брови;

двигательные элементы – три пары глазных мышц, которые иннервируются тремя парами черепно-мозговых нервов (глазодвигательным – III пара, блоковым – IV пара и отводящим – VI пара).

Строение глаза

Кратко остановимся на основных функциях элементов органа зрения.

1. Склера – соединительная ткань белого цвета, окружающая глазное яблоко; выполняет опорную и защитную функции.

2. Коньюктива – прозрачная ткань, снабженная кровеносными сосудами. Обилие чувствительной иннервации в конъюнктиве обеспечивает ее защитную функцию, а секрет многочисленных желез, расположенных в ней, выполняет роль смазки, уменьшающей трение при движении глазного яблока, и предохраняет роговицу от высыхания.

3. Роговица – прозрачное наружное защитное образование, кривизна поверхности которого определяет особенности преломления света. При неправильной кривизне роговицы возникает искажение зрительного изображения – астигматизм.

4. Радужная оболочка – пигментированный слой клеток, определяющий цвет глаз человека. В ней находятся гладкомышечные волокна, регулирующие просвет зрачка (ресничное тело). Просвет зрачка может меняться в широких пределах – от 1 до 8 мм в диаметре. Изменение диаметра зрачка происходит либо при изменении освещенности окружающей среды (в темноте – расширяется), либо при изменении эмоционального состояния человека (при активации симпатического отдела ВНС, при стрессе зрачок расширяется).

5. Хрусталик – важнейшая структура оптической системы глаза, двояковыпуклая линза, подвешенная на мышцах к наружному сосудистому слою. Кривизна хрусталика (степень выпуклости) может меняться в зависимости от удаленности рассматриваемого предмета. Изменение кривизны хрусталика – аккомодация – происходит при напряжении или расслаблении мышц. При нарушениях процесса аккомодации глаза возникают такие заболевания, как миопия (близорукость) или гиперметропия (дальнозоркость).

6. Стекловидное тело – также является частью оптической системы глаза. Это коллоидный раствор гиалуроновой кислоты (студенистая жидкость).

В целом оптическая система глаза обеспечивает фокусировку изображения на рецепторной поверхности сетчатки. При этом изображение попадает на сетчатку действительное (не искаженное), резко уменьшенное и перевернутое.

Сами рецепторы располагаются в сетчатке, которая также имеет достаточно сложное строение и представляет собой высокоорганизованную слоистую структуру, объединяющую не только рецепторы, но и ряд других нейронов. По сложности организации сетчатку рассматривают как часть мозга, вынесенную на периферию. В ней происходит первичная обработка зрительных сигналов, преобразование их в нервные импульсы, передающиеся в центральные структуры.


Строение сетчатки глаза

7. Фоторецепторы (палочки и колбочки) расположены в пигментном слое сетчатки, наиболее удаленном от хрусталика, они повернуты от пучка падающего света.

Палочки отвечают за зрение в темноте и сумерках (черно-белое) за счет наличия в них зрительного пигмента родопсина. Их в сетчатке содержится примерно 120 млн.

Колбочек и они ответственны за цветовое зрение благодаря наличию в них трех типов зрительных пигментов (йодопсини др.). в сетчатке меньше (примерно 6 млн.)

Зрительные пигменты (родопсин и йодопсин) состоят из ретиналя (альдегида витамина А) и гликопротеида опсина. Они близки по строению, но отличаются по спектрам поглощения световых волн – для родопсина, палочкового пигмента, максимум находится на длине волны около 500 нм, а для иодопсина, колбочкового пигмента, – существует три пика в зависимости от типа колбочки (430–470 нм – синий цвет, 500 – 530 нм – зеленый, 620 – 760 нм – красный цвет). Недостаток витамина А в пище приводит к нарушению синтеза зрительных пигментов и, как следствие, к нарушению сумеречного зрения («куриная слепота»).

8. Центральная ямка (желтое пятно, fovea) – место на сетчатке, где плотность колбочек максимальна и, следовательно, максимальна острота зрения. Колбочки располагаются ближе к центру сетчатки, а палочки – по периферии.

9. Слепое пятно – место выхода зрительного нерва из глаза, там вообще нет зрительных рецепторов.

Механизм работы зрительного рецептора. Наружные сегменты фоторецепторов (и палочек, и колбочек) содержат высокочувствительную многоступенчатую систему усиления сигнала в сетчатке.

Внутриклеточная регистрация электрических процессов от фоторецепторов показала, что в темноте вдоль фоторецептора из внутреннего к наружному сегменту течет т.н. темновой ток, и непрерывно идет выделение медиатора. Освещение приводит к блокаде этого тока. В темноте также происходит ресинтез (восстановление) зрительных пигментов, распавшихся во время освещения. Причем восстановление йодопсина происходит в 500 раз быстрее, чем родопсина. Этим объясняются различия в скорости световой и темновой адаптации зрительной системы.

Фоторецепторы связаны между собой электрическими синапсами (щелевыми контактами), причем палочки с палочками, а колбочки с колбочками. Благодаря такому соединению сигнал, возникший в одном рецепторе, быстро распространяется к соседним клеткам.

В результате сложных фотохимических процессов в фоторецепторах при действии света возникает рецепторный потенциал (РП) в виде гиперполяризации мембраны рецептора. Такая форма рецепторного потенциала является исключением, т.к. во всех остальных рецепторных клетках РП представляет собой деполяризацию мембраны сенсорной клетки. Однако, как и в случае других сенсорных систем, амплитуда гиперполяризационного РП зрительных рецепторов возрастает с увеличением интенсивности освещения.

В сетчатке также существуют два типа тормозных нейронов: горизонтальные и амакриновые клетки.

10. Горизонтальные и амакриновые клетки.

Горизонтальные клетки связывают фоторецепторы с биполярными клетками и могут передавать сигналы вдоль наружного синаптического слоя сетчатки.

Амакриновые клетки действуют аналогично горизонтальным, но только на уровне передачи сигналов от биполярных клеток к ганглиозным клеткам. Горизонтальные и амакриновые клетки являются тормозными нейронами, они обеспечивают процессы латерального торможения в сетчатке.

Начиная с уровня биполярных клеток нейроны зрительной системы делят на два типа, противоположным образом реагирующие на освещение и затемнение: on-клетки (активируются при освещении и тормозятся при затемнении) и off-клетки (активируются в темноте и тормозятся на свету). Такое распределение сохраняется далее на всех уровнях зрительной системы до коры включительно. Считается, что этот механизм обеспечивает возможность восприятия двух противоположных классов зрительных образов: светлые объекты на темном фоне (возбуждаются on-клетки) и темные объекты на светлом фоне (возбуждаются off-клетки).

Фоторецепторы – это вторичные рецепорные клетки, их отростки соединены с биполярными клетками, а те, в свою очередь, образуют синапсы с ганглиозными клетками. Аксоны ганглиозных клеток образуют зрительный нерв.

11. Ганглиозные клетки являются выходами из сетчатки, именно их длинные аксоны формируют зрительный нерв. Большинство ганглиозных клеток имеют концентрические (т.е. в виде окружности) рецептивные поля с центром и периферией по on- и off-типу – при освещении одной зоны ганглиозная клетка возбуждается, а при ее затемнении тормозится (on-эффект), или же наоборот (off-эффект). Благодаря двум типам ганглиозных клеток (с on- и off-центрами рецептивных полей) обнаружение светлых и темных объектов в поле зрения происходит уже на уровне сетчатки глаза.

Проводниковый отдел зрительного анализатора

Зрительный нерв, идущий от одного глаза, содержит около 800 тыс. волокон ганглиозных клеток сетчатки. После выхода из глаза зрительные нервы от обоих глаз имеют неполный перекрест в области гипоталамуса – зрительная хиазма. Там около 500 тыс. волокон переходит на другую сторону, а оставшиеся 300 тыс. идут в кору того же полушария. С перекрещенными волокнами от другого глаза они образуют зрительный тракт. Далее волокна зрительного тракта проходят через следующие структуры головного мозга:

 ядра верхних (передних) бугров четверохолмия (средний мозг);

 наружное (латеральное) коленчатое тело (таламус), а от него в поле 17 в затылочной коре;

 ядра глазодвигательных нервов;

 супрахиазмальные ядра гипоталамуса.

Наружное (медиальное) коленчатое тело таламуса – это первый уровень в ЦНС, на котором происходит конвергенция от двух сетчаток (объединение изображений от обоих глаз). Это объединения является необходимым условием для объемного (стереоскопического, бинокулярного) зрения. В результате неполного перекреста волокон зрительного нерва в хиазме наружное коленчатое тело каждой стороны получает сигналы от сетчаток обоих глаз. Наиболее подробно там представлена проекция центральной части зрительного поля (центральная ямка).

Так же как и рецептивные поля ганглиозных клеток, все нейроны наружного коленчатого тела можно разделить на два класса: с on- и off-центром.

Верхнее двухолмие среднего мозга обеспечивает в основном ориентировочные реакции на зрительные стимулы. Большая часть нейронов этой области реагирует на движение объекта в любом направлении, и только 10% нейронов являются дирекционно селективными, т.е. реагируют на одно предпочтительное направление. В нижних слоях серого вещества верхнего двухолмия есть нейроны, которые не реагируют на зрительные стимулы, но активируются при саккаде (быстрых скачках из одной точки фиксации взгляда в другую с амплитудой от нескольких угловых минут до нескольких градусов и длительностью от 10 до 80 мс) глаза в определенном направлении. В верхних же слоях этой структуры имеется полная упорядоченная проекция сетчатки глаза.

Глазодвигательная система выполняет ряд функций, необходимых для полноценного зрительного восприятия:

 сохраняет неподвижным изображение внешнего мира на сетчатке при движении относительно этого мира;

 выделяет во внешнем мире некоторые объекты, помещает их в зоне сетчатки с высоким разрешением (центральная ямка) и прослеживает их движениями глаз и головы;

 скачкообразными перемещениями взора (саккадами) сканируются (рассматриваются) все объекты внешнего мира.

Корковый отдел зрительного анализатора

Проекционными зонами зрительного анализатора являются поля 17, 18 и 19 по Бродману (или поля V1, V2, V3 по современной терминологии). Сетчатка отдельно представлена в каждом из этих полей, хотя наиболее упорядоченное топологическое соответствие имеет место между сетчаткой и первичной проекционной зоной – полем 17. Первичная проекционная зона зрительной системы осуществляет первичный, но более сложный, чем на предыдущих уровнях, анализ информации. Там располагаются сложные рецептивные поля детекторного типа, которые позволяют выделять из целого изображения лишь отдельные признаки и избирательно реагировать именно на эти фрагменты. Разные свойства зрительных объектов (форма, цвет, движение и т.д.) обрабатываются в разных частях зрительной системы.

Основная масса клеток всех трех корковых полей зрительной системы специализирована на выделении ориентированных линий и контуров, составляющих основные элементы зрительных стимулов.

В отличие от рецептивных полей предыдущих уровней анализа зрительных сигналов, рецептивные поля коры имеют не концентрическую форму, а в них параллельно расположены антагонистические зоны, определенным образом ориентированные в поле зрения.