Смотреть что такое "сгсе" в других словарях. Система единиц си

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

В СГС существует ряд дополнительных единиц измерения, которые являются производными от основных. Некоторые физические константы получаются безразмерными. Есть несколько вариантов СГС, отличающихся выбором электрических и магнитных единиц измерения и величиной констант в различных законах электромагнетизма (СГСЭ, СГСМ, Гауссова система единиц).

СГС отличается от СИ не только выбором конкретных единиц измерения. Из-за того, что в СИ были дополнительно введены основные единицы для электромагнитных физических величин, которых не было в СГС, некоторые единицы имеют другие размерности . Из-за этого некоторые физические законы в этих системах записываются по-разному (например, закон Кулона). Отличие заключается в коэффициентах, большинство из которых - размерные. Поэтому, если в формулы, записанные в СГС, просто подставить единицы измерения СИ, то будут получены неправильные результаты. Это же относится и к разным разновидностям СГС - в СГСЭ, СГСМ и Гауссовой системе единиц одни и те же формулы могут записываться по-разному.

В формулах СГС отсутствуют нефизические коэффициенты, необходимые в СИ (например, электрическая постоянная в законе Кулона), поэтому она считается более удобной для теоретических исследований.

В научных работах, как правило, выбор той или иной системы определяется более преемственностью обозначений, а не удобством.

Расширения СГС

Для облегчения работы в СГС в электродинамике были приняты дополнительно системы СГСМ и СГСЭ.

СГСМ

СГСЭ

В СГСЭ µ 0 = 1/с 2 (размерность: с 2 /см 2 ), ε 0 = 1. Электрические единицы в системе СГСЭ применяют в основном в теоретических работах. Они не имеют собственных наименований и неудобны для измерений.

СГС симметричная, или Гауссова система единиц

В симметричной СГС (называемой также смешанной СГС или Гауссовой системой единиц) магнитные единицы равны единицам системы СГСМ, электрические - единицам системы СГСЭ. Магнитная и электрическая постоянные в этой системе единичные и безразмерные: µ 0 = 1 , ε 0 = 1 .

История

Система мер, основанная на сантиметре, грамме и секунде, была предложена немецким ученым Гауссом в . В Максвелл и Томсон усовершенствовали систему, добавив в нее электромагнитные единицы измерения.

Величины многих единиц системы СГС были признаны неудобными для практического использования, и вскоре она была заменена системой, основанной на метре , килограмме и секунде (МКС). СГС продолжали использовать параллельно с МКС, в основном в научных исследованиях.

Из трёх дополнительных систем наибольшее распространение получила система СГС симметричная.

Некоторые единицы измерения

  • скорость - см/с;
  • ускорение - см/с²;
  • сила - дина , г·см/с²;
  • энергия - эрг , г·см²/с²;
  • мощность - эрг/с, г·см²/с³;
  • давление - дина/см², г/(см·с²);
  • динамическая вязкость - пуаз , г/(см·с);
  • кинематическая вязкость - стокс , см²/с;
  • магнитодвижущая сила - гильберт .

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "СГСЕ" в других словарях:

    Кeppa явление, возникновение двойного лучепреломления (См. Двойное лучепреломление) в оптически изотропных веществах, например жидкостях и газах, под воздействием однородного электрического поля. Открыт Дж. Керром в 1875. В результате К.… …

    Квадратичный электрооптич. эффект, возникновение двойного лучепреломления в оптически изотропных в вах (жидкостях, стёклах, кристаллах с центром симметрии) под воздействием однородного электрич. поля. Открыт шотл. физиком Дж. Керром (J. Kerr) в… … Физическая энциклопедия

    - (С), величина, характеризующая способность проводника удерживать электрический заряд. Для уединённого проводника С = Q/φ, где Q заряд проводника, φ его потенциал. Электрическая ёмкость конденсатора С = Q/(φ1 φ2), где Q абсолютная величина… … Энциклопедический словарь

    Вещества, плохо проводящие электрический ток. Термин «Д.» (от греч. diá через и англ. electric электрический) введён М. Фарадеем (См. Фарадей) для обозначения веществ, через которые проникают электрические поля. В любом веществе,… … Большая советская энциклопедия

    Элементарный электрический заряд (е), наименьший Электрический заряд, положительный или отрицательный, величина которого равна е = (1,6021917 ± 0,0000070)∙10 19 к в системе СИ или е = (4,803250 ± 0,000021)∙10 19см3/2г1/2сек 1 в системе… … Большая советская энциклопедия

    - [от лат. posi (tivus) положительный и (элек)трон (См. Электрон)] (символ е+), элементарная частица с положительным электрическим зарядом, античастица (См. Античастицы) по отношению к электрону. Массы (me) и спины (J) П. и электрона равны … Большая советская энциклопедия

    Характеристика проводника, количественная мера его способности удерживать электрический заряд. В электростатическом поле все точки проводника имеют один и тот же потенциал φ. Потенциал φ (отсчитываемый от нулевого уровня на бесконечности) … Большая советская энциклопедия

    - (новолат. molecule, уменьшит. от лат. moles масса), наименьшая ч ца в ва, обладающая его осн. хим. св вами и состоящая из атомов, соединённых между собой химическими связями. Число атомов в М. составляет от двух (Н2, О2, HF, KCl) до сотен и тысяч … Физическая энциклопедия

    ИЗОТОПОВ РАЗДЕЛЕНИЕ, выделение отдельных изотопов из естеств. их смеси или обогащение смеси отдельными изотопами. Первые попытки И. р. сделаны Ф. У. Астоном (F. W. Aston, 1949) и др. гл. обр. для обнаружения изотопов у стабильных элементов,… … Физическая энциклопедия

    Испускание электронов нагретыми телами (эмиттерами) в вакуум или др. среду. Выйти из тела могут только те электроны, энергия к рых больше энергии покоящегося вне эмиттера электрона (см. Работа выхода). Число таких электронов (обычно это электроны … Физическая энциклопедия

До введения международной системы единиц СИ применялись следующие системы единиц.

Метрическая система мер - совокупность единиц физических величин, в основу которой положены две единицы: метр - единица длины, килограмм - единица массы. Отличительной особенностью Метрической системы мер явился принцип десятичных соотношений в отношении кратных и дольных единиц. Метрическая система мер , введенная первоначально во Франции, получила во второй половине XIX в. международное признание.

Система Гаусса.

Впервые понятие системы единиц физических величин было введено немецким математиком К. Гауссом (1832). Идея Гаусса состояла в следующем. Сначала выбирается несколько величин, не зависящих друг от друга. Величины эти называют основными, а их единицы - основными единицами системы единиц . Основные величины выбираются так, чтобы, пользуясь формулами, выражающими связь между физическими величинами, можно было образовать единицы других величин. Единицы, полученные с помощью формул и выраженные через основные единицы, Гаусс назвал производными единицами. Пользуясь своей идеей, Гаусс построил систему единиц магнитных величин. Основными единицами этой системы Гаусса были выбраны: миллиметр - единица длины, секунда - единица времени. Идеи Гаусса оказались весьма плодотворными. Все последующие системы единиц строились на предложенных им принципах.

Система СГС

Система СГС построена на основе системы величин LMT. Основные единицы системы СГС: сантиметр - единица длины, грамм - единица массы, секунда - единица времени. В системе СГС с использованием указанных трех основных единиц установлены производные единицы механических и акустических величин. С использованием единицы термодинамической температуры - кельвина - и единицы силы света - канделы - система СГС распространяется на область тепловых и оптических величин.

Система МКС .

Основные единицы системы МКС : метр - единица длины, килограмм - единица массы, секунда - единица времени. Так же как и система СГС, система МКС построена на основе системы величин LMT. Эта система единиц была предложена в 1901 г. итальянским инженером Джорджи и содержала кроме основных производные единицы механических и акустических величин. Путем добавления в качестве основных единицы термодинамической температуры - кельвина - и силы света - канделы - систему МКС можно было распространить на область тепловых и световых величин.

Система МТС.

Система единиц МТС построена на основе системы величин LMT. Основные единицы системы: метр - единица длины, тонна - единица массы, секунда - единица времени. Система МТС была разработана во Франции и узаконена ее правительством в 1919 г. Система МТС была принята и в СССР и в соответствии с государственным стандартом применялась более 20 лет (1933 - 1955). Единица массы этой системы - тонна - по своему размеру оказалась удобной в ряде отраслей производства, имеющих дело со сравнительно большими массами. Система МТС имела и ряд других преимуществ. Во-первых, числовые значения плотности вещества при выражении ее в системе МТС совпадали с числовыми значениями этой величины при выражении ее в системе СГС (например в системе СГС плотность железа 7,8 г/см3, в системе МТС - 7,8 т/м3). Во-вторых, единица работы системы МТС - килоджоуль - имела простое соотношение с единицей работы системы МКС (1 кДж = 1000 Дж). Но размеры единиц подавляющего большинства производных величин в этой системе оказались неудобными на практике. В СССР система МТС была отменена в 1955 г.

Система МКГСС.

Система единиц МКГСС построена на основе системы величин LFT. Основные единицы ее: метр - единица длины, килограмм-сила - единица силы, секунда - единица времени. Килограмм-сила - сила, равная весу тела массой 1 кг при нормальном ускорении свободного падения g0 = 9,80665 м/с2. Эта единица силы, а также некоторые производные единицы системы МКГСС оказались удобными при применении их в технике. Поэтому система получила широкое распространение в механике, теплотехнике и ряде других отраслей производства. Основной недостаток системы МКГСС - весьма ограниченные ее возможности применения в физике. Существенным недостатком системы МКГСС является также то, что единица массы в этой системе не имеет простого десятичного соотношения с единицами массы других систем. С введением Международной системы единиц система МКГСС утратила свое значение.

Системы единиц электромагнитных величин. Известны два способа построения систем электрических и магнитных величин на основе системы СГС: на трех основных единицах (сантиметр, грамм, секунда) и на четырех основных единицах (сантиметр, грамм, секунда и одна единица электрической или магнитной величины). Первым способом, то есть с использованием трех основных единиц на основе системы СГС, получены три системы единиц: электростатическая система единиц (система СГСЭ), электромагнитная система единиц (система СГСМ), симметричная система единиц (система СГС). Рассмотрим эти системы.

Система СГСЭ

Электростатическая система единиц (система СГСЭ). При построении этой системы первой производной электрической единицей вводится единица электрического заряда с использованием закона Кулона в качестве определяющего уравнения. При этом абсолютная диэлектрическая проницаемость рассматривается безразмерной электрической величиной. Как следствие этого, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.

Система СГСМ

Электромагнитная система единиц (система СГСМ). При построении этой системы первой производной электрической единицей вводится единица силы тока с использованием закона Ампера в качестве определяющего уравнения. При этом абсолютная магнитная проницаемость рассматривается безразмерной электрической величиной. В связи с этим, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.

Система СГС

Симметричная система единиц (система СГС) . Эта система является совокупностью систем СГСЭ и СГСМ. В системе СГС в качестве единиц электрических величин используются единицы системы СГСЭ, а в качестве единиц магнитных величин - единицы системы СГСМ. В результате комбинации двух систем в некоторых уравнениях, связывающих электрические и магнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.

  • была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.
  • Система СИ определяет семь основных и производные единицы измерения, а также набор приставок. Установлены стандартные сокращённые обозначения для единиц измерения и правила записи производных единиц.
  • В России действует ГОСТ 8.417-2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).
  • Основные единицы : килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других.
  • Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в Системе СИ присвоены собственные названия.
  • можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

История

  • Система СИ основана на метрической системе мер, которая была создана французскими учеными и впервые была широко внедрена после Великой Французской революции. До введения метрической системы, единицы измерения выбирались случайно и независимо друг от друга. Поэтому пересчет из одной единицы измерения в другую был сложным. К тому же в разных местах применялись разные единицы измерения, иногда с одинаковыми названиями. Метрическая система должна была стать удобной и единой системой мер и весов.
  • В 1799 г. были утверждены два эталона — для единицы измерения длины (метр) и для единицы измерения веса (килограмм).
  • В 1874 г. была введена система СГС, основанная на трех единицах измерения - сантиметр, грамм и секунда. Были также введены десятичные приставки от микро до мега.
  • В 1889 г. 1-ая Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, т. к. эти единицы были признаны более удобными для практического использования.
  • В последующем были введены базовые единицы для измерения физических величин в области электричества и оптики.
  • В 1960 г. XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)».
  • В 1971 г. IV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу измерения количества вещества (моль).
  • В настоящее время СИ принята в качестве законной системы единиц измерения большинством стран мира и почти всегда используется в области науки (даже в тех странах, которые не приняли СИ).

Исторические системы мер и единиц.

До введения международной системы единиц СИ применялись следующие системы единиц:

Система Гаусса.

Впервые понятие системы единиц физических величин было введено немецким математиком К. Гауссом (1832). Идея Гаусса состояла в следующем. Сначала выбирается несколько величин, не зависящих друг от друга. Величины эти называют основными, а их единицы - основными единицами системы единиц . Основные величины выбираются так, чтобы, пользуясь формулами, выражающими связь между физическими величинами, можно было образовать единицы других величин. Единицы, полученные с помощью формул и выраженные через основные единицы, Гаусс назвал производными единицами. Пользуясь своей идеей, Гаусс построил систему единиц магнитных величин. Основными единицами этой системы Гаусса были выбраны: миллиметр - единица длины, секунда - единица времени. Идеи Гаусса оказались весьма плодотворными. Все последующие системы единиц строились на предложенных им принципах LMT = Length Mass Time = Длина Масса Время.

  • Система СГС (CGS units)

    • Система СГС построена на основе системы величин LMT. Основные единицы системы СГС: сантиметр - единица длины, грамм - единица массы, секунда - единица времени. В системе СГС с использованием указанных трех основных единиц установлены производные единицы механических и акустических величин. С использованием единицы термодинамической температуры - кельвина - и единицы силы света - канделы - система СГС распространяется на область тепловых и оптических величин.
  • Система МКС. (MKS units)

    • Основные единицы системы МКС : метр - единица длины, килограмм - единица массы, секунда - единица времени. Так же как и система СГС, система МКС построена на основе системы величин LMT. Эта система единиц была предложена в 1901 г. итальянским инженером Джорджи и содержала кроме основных производные единицы механических и акустических величин. Путем добавления в качестве основных единицы термодинамической температуры - кельвина - и силы света - канделы - систему МКС можно было распространить на область тепловых и световых величин.
  • Система МТС.

    • Система единиц МТС (MTS units system) построена на основе системы величин LMT. Основные единицы системы: метр - единица длины, тонна - единица массы, секунда - единица времени. Система МТС была разработана во Франции и узаконена ее правительством в 1919 г. Система МТС была принята и в СССР и в соответствии с государственным стандартом применялась более 20 лет (1933 - 1955). Единица массы этой системы - тонна - по своему размеру оказалась удобной в ряде отраслей производства, имеющих дело со сравнительно большими массами. Система МТС имела и ряд других преимуществ. Во-первых, числовые значения плотности вещества при выражении ее в системе МТС совпадали с числовыми значениями этой величины при выражении ее в системе СГС (например в системе СГС плотность железа 7,8 г/см3, в системе МТС - 7,8 т/м3). Во-вторых, единица работы системы МТС - килоджоуль - имела простое соотношение с единицей работы системы МКС (1 кДж = 1000 Дж). Но размеры единиц подавляющего большинства производных величин в этой системе оказались неудобными на практике. В СССР система МТС была отменена в 1955 г.
  • Система МКГСС (MKGSS, metre-kilogram-force-second system of units)

    • Система единиц МКГСС построена на основе системы величин LFT. Основные единицы ее: метр - единица длины, килограмм-сила - единица силы, секунда - единица времени. Килограмм-сила - сила, равная весу тела массой 1 кг при нормальном ускорении свободного падения g 0 = 9,80665 м/с2. Эта единица силы, а также некоторые производные единицы системы МКГСС оказались удобными при применении их в технике. Поэтому система получила широкое распространение в механике, теплотехнике и ряде других отраслей производства. Основной недостаток системы МКГСС - весьма ограниченные ее возможности применения в физике. Существенным недостатком системы МКГСС является также то, что единица массы в этой системе не имеет простого десятичного соотношения с единицами массы других систем. С введением Международной системы единиц система МКГСС утратила свое значение.
  • Системы единиц электромагнитных величин.

  • Системы единиц электромагнитных величин. Известны два способа построения систем электрических и магнитных величин на основе системы СГС: на трех основных единицах (сантиметр, грамм, секунда) и на четырех основных единицах (сантиметр, грамм, секунда и одна единица электрической или магнитной величины). Первым способом, то есть с использованием трех основных единиц на основе системы СГС, получены три системы единиц: электростатическая система единиц (система СГСЭ), электромагнитная система единиц (система СГСМ), симметричная система единиц (система СГС). Рассмотрим эти системы.
  • Система СГСЭ (ES, E.S., e.s. units)

    • Электростатическая система единиц (система СГСЭ).При построении этой системы первой производной электрической единицей вводится единица электрического заряда с использованием закона Кулона в качестве определяющего уравнения. При этом абсолютная диэлектрическая проницаемость рассматривается безразмерной электрической величиной. Как следствие этого, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.
  • Система СГСМ (EM, E.M., e.m. units)

    • Электромагнитная система единиц (система СГСМ).При построении этой системы первой производной электрической единицей вводится единица силы тока с использованием закона Ампера в качестве определяющего уравнения. При этом абсолютная магнитная проницаемость рассматривается безразмерной электрической величиной. В связи с этим, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.
  • Система СГС (CGS units)

    • Симметричная система единиц (система СГС). Эта система является совокупностью систем СГСЭ и СГСМ. В системе СГС в качестве единиц электрических величин используются единицы системы СГСЭ, а в качестве единиц магнитных величин - единицы системы СГСМ. В результате комбинации двух систем в некоторых уравнениях, связывающих электрические и магнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме.

СГС (сантиметр-грамм-секунда) - система единиц измерения, которая широко использовалась до принятия Международной системы единиц (СИ). Другое название - абсолютная физическая система единиц.

В рамках СГС существуют три независимые размерности (длина, масса и время), все остальные сводятся к ним путём умножения, деления и возведения в степень (возможно, дробную). Кроме трёх основных единиц измерения - сантиметра, грамма и секунды, в СГС существует ряд дополнительных единиц измерения, которые являются производными от основных. Некоторые физические константы получаются безразмерными. Есть несколько вариантов СГС, отличающихся выбором электрических и магнитных единиц измерения и величиной констант в различных законах электромагнетизма (СГСЭ, СГСМ, Гауссова система единиц). СГС отличается от СИ не только выбором конкретных единиц измерения. Из-за того, что в СИ были дополнительно введены основные единицы для электромагнитных физических величин, которых не было в СГС, некоторые единицы имеют другие размерности. Из-за этого некоторые физические законы в этих системах записываются по-разному (например, закон Кулона). Отличие заключается в коэффициентах, большинство из которых - размерные. Поэтому, если в формулы, записанные в СГС, просто подставить единицы измерения СИ, то будут получены неправильные результаты. Это же относится и к разным разновидностям СГС - в СГСЭ, СГСМ и Гауссовой системе единиц одни и те же формулы могут записываться по-разному.

В формулах СГС отсутствуют нефизические коэффициенты, необходимые в СИ (например, электрическая постоянная в законе Кулона), и, в Гауссовой разновидности, все четыре вектора электрических и магнитных полей E, D, B и H имеют одинаковые размерности, в соответствии с их физическим смыслом, поэтому СГС считается более удобной для теоретических исследований.

В научных работах, как правило, выбор той или иной системы определяется более преемственностью обозначений и прозрачностью физического смысла, чем удобством измерений.

История

Система мер, основанная на сантиметре, грамме и секунде, была предложена немецким ученым Гауссом в 1832. В 1874 Максвелл и Томсон усовершенствовали систему, добавив в неё электромагнитные единицы измерения.

Величины многих единиц системы СГС были признаны неудобными для практического использования, и вскоре она была заменена системой, основанной на метре, килограмме и секунде (МКС). СГС продолжали использовать параллельно с МКС, в основном в научных исследованиях.

После принятия в 1960 системы СИ СГС почти вышла из употребления в инженерных приложениях, однако продолжает широко использоваться, например, в теоретической физике и астрофизике из-за более простого вида законов электромагнетизма.

Из трёх дополнительных систем наибольшее распространение получила система СГС симметричная.

Некоторые единицы измерения

  • - см/с;
  • - см/с² ;
  • - , г·см/с² ;
  • энергия - эрг , г·см² /с² ;
  • - эрг/с, г·см² /с² ;
  • - дина/см² , г/(см·с²);
  • - , г/(см·с);
  • - , см² /с;
  • - (СГСМ, гауссова система);