Соли. Классификация, состав и названия солей

Химические уравнения

Химическое уравнение - это выражение реакции при помощи химических формул. Химические уравнения показывают, какие вещества вступают в химическую реакцию и какие вещества образуются в результате этой реакции. Уравнение составляется на основе закона сохранения массы и показывает количественные соотношения веществ, участвующих в химической реакции.

В качестве примера рассмотрим взаимодействие гидроксида калия с фосфорной кислотой :

Н 3 РО 4 + 3 КОН = К 3 РО 4 + 3 Н 2 О.

Из уравнения видно, что 1 моль ортофосфорной кислоты (98 г) реагирует с 3 молями гидроксида калия (3·56 г). В результате реакции образуется 1 моль фосфата калия (212 г) и 3 моля воды (3·18 г).

98 + 168 = 266 г; 212 + 54 = 266 г видим, что масса веществ, вступивших в реакцию, равна массе продуктов реакции. Уравнения химической реакции позволяет производить различные расчёты, связанные с данной реакцией.

Сложные вещества делятся на четыре класса: оксиды, основания, кислоты и соли.

Оксиды - это сложные вещества, состоящие из двух элементов, один из которых кислород, т.е. оксид - это соединение элемента с кислородом.

Название оксидов образуется от названия элемента, входящего в состав оксида. Например, BaO - оксид бария. Если оксид элемент имеет переменную валентность, то после названия элемента в скобках указывается его валентность римской цифрой. Например, FeO - оксид железа (I), Fe2О3 - оксид железа (III).

Все оксиды делятся на солеобразующие и несолеобразующие.

Солеобразующие оксиды - это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями - соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl2 + H2O.

В результате химических реакций можно получать и другие соли:

CuO + SO3 → CuSO4.

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N2O, NO.

Солеобразующие оксиды бывают 3-х типов: основными (от слова «основание»), кислотными и амфотерными.

Основные оксиды - это оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na2O, K2O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:


Na2O + H2O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na2O + SO3 → Na2SO4.

3. Реагируют с кислотами, образуя соль и воду:

CuO + H2SO4 → CuSO4 + H2O.

4. Реагируют с амфотерными оксидами:

Li2O + Al2O3 → 2LiAlO2.

5. Основные оксиды реагируют с кислотными оксидами, образуя соли:

Na2O + SO3 = Na2SO4

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO2, SO3, P2O5, N2O3, Cl2O5, Mn2O7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO3 + H2O → H2SO4.

Но не все кислотные оксиды непосредственно реагируют с водой (SiO2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO2 + CaO → CaCO3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO2 + Ba(OH)2 → BaCO3 + H2O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH)2 и H2ZnO2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно?вные, либо кислотные свойства, например - Al2O3, Cr2O3, MnO2; Fe2O3 ZnO. К примеру, амфотерный характер оксида цинка проявляется при взаимодействии его как с соляной кислотой, так и с гидроксидом натрия:

ZnO + 2HCl = ZnCl 2 + H 2 O

ZnO + 2NaOH = Na 2 ZnO 2 + H 2 O

Так как далеко не все амфотерные оксиды расворимы в воде, то доказать амфотерность таких оксидов заметно сложнее. Например, оксид алюминия (III) в реакции сплавления его с дисульфатом калия проявляет основные свойства а при сплавлении с гидроксидами кислотные:

Al2O3 + 3K2S2O7 = 3K2SO4 + A12(SO4)3

Al2O3 + 2KOH = 2KAlO2 + H2O

У различных амфотерных оксидов двойственность свойств может быть выражена в различной степени. Например, оксид цинка одинаково легко растворяется и в кислотах, и в щелочах, а оксид железа (III) - Fe2O3 - обладает преимущественно основными свойствами.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl2 + H2O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль - цинкат натрия и воду:

ZnO + 2NaOH → Na2 ZnO2 + H2O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H2O => Na2.

Координационное число - характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле. Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn - это 4; Для и Al - это 4 или 6; Для и Cr - это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Способы получения оксидов из простых веществ - это либо прямая реакция элемента с кислородом:

либо разложение сложных веществ:

а) оксидов

4CrO3 = 2Cr2O3 + 3O2-

б) гидроксидов

Ca(OH)2 = CaO + H2O

в) кислот

H2CO3 = H2O + CO2-

CaCO3 = CaO +CO2

А также взаимодействие кислот - окислителей с металлами и неметаллами:

Cu + 4HNO3 (конц) = Cu(NO3) 2 + 2NO2 + 2H2O

Оксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ - это оксиды.

Основания - это сложные вещества, в молекулах которых атомы металла соединены с одной или несколькими гидроксильными группами.

Основания - это электролиты, которые при диссоциации образуют в качестве анионов только гидроксид-ионы.

NaOH = Na + + OH -

Ca(OH)2 = CaOH + + OH - = Ca 2 + + 2OH -

Существует несколько признаков классификации оснований:

В зависимости от растворимости в воде основания делят на щёлочи и нерастворимые. Щелочами являются гидроксиды щелочных металлов (Li, Na, K, Rb, Cs) и щелочноземельных металлов (Ca, Sr, Ba). Все остальные основания являются нерастворимыми.

В зависимости от степени диссоциации основания делятся на сильные электролиты (все щёлочи) и слабые электролиты (нерастворимые основания).

В зависимости от числа гидроксильных групп в молекуле основания делятся на однокислотные (1 группа ОН), например, гидроксид натрия, гидроксид калия, двухкислотные (2 группы ОН), например, гидроксид кальция, гидроксид меди(2), и многокислотные.

Химические свойства.

Ионы ОН - в растворе определяют щелочную среду.

Растворы щелочей изменяют окраску индикаторов:

Фенолфталеин: бесцветный ® малиновый,

Лакмус: фиолетовый ® синий,

Метилоранж: оранжевый ® жёлтый.

Растворы щелочей взаимодействуют с кислотными оксидами с образованием солей тех кислот, которые соответствуют реагирующим кислотным оксидам. В зависимости от количества щёлочи образуются средние или кислые соли. Например, при взаимодействии гидроксида кальция с оксидом углерода(IV) образуются карбонат кальция и вода:

Ca(OH)2 + CO2 = CaCO3? + H2O

А при взаимодействии гидроксида кальция с избытком оксида углерода (IV) образуется гидрокарбонат кальция:

Ca(OH)2 + CO2 = Ca(HCO3)2

Ca2+ + 2OH- + CO2 = Ca2+ + 2HCO32-

Все основания взаимодействуют с кислотами с образованием соли и воды, например: при взаимодействии гидроксида натрия с соляной кислотой образуются хлорид натрия и вода:

NaOH + HCl = NaCl + H2O

Na+ + OH- + H+ + Cl- = Na+ + Cl- + H2O

Гидроксид меди (II) растворяется в соляной кислоте с образованием хлорида меди (II) и воды:

Cu(OH)2 + 2HCl = CuCl2 + 2H2O

Cu(OH)2 + 2H+ + 2Cl- = Cu2+ + 2Cl- + 2H2O

Cu(OH)2 + 2H+ = Cu2+ + 2H2О.

Реакция между кислотой и основанием называется реакцией нейтрализации.

Нерастворимые основания при нагревании разлагаются на воду и соответствующий основанию оксид металла, например:

Cu(OH)2 = CuO + H2 2Fe(OH)3 = Fe2O3 + 3H2O

Щёлочи вступают во взаимодействие с растворами солей, если выполняется одно из условий протекания реакции ионного обмена до конца (выпадает осадок),

2NaOH + CuSO4 = Cu(OH)2? + Na2SO4

2OH- + Cu2+ = Cu(OH)2

Реакция протекает за счёт связывания катионов меди с гидроксид-ионами.

При взаимодействии гидроксида бария с раствором сульфата натрия образуется осадок сульфата бария.

Ba(OH)2 + Na2SO4 = BaSO4? + 2NaOH

Ba2+ + SO42- = BaSO4

Реакция протекает за счёт связывания катионов бария и и сульфат-анионов.

Кислоты - это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.

По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H2SO4 серная кислота, H2SO3 сернистая кислота, HNO3 азотная кислота, H3PO4 фосфорная кислота, H2CO3 угольная кислота, H2SiO3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H2S сероводородная кислота).

В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н).

К И С Л О Т Ы

Часть молекулы кислоты без водорода называется кислотным остатком.

Кислотные остатки могут состоять из одного атома (-Cl, -Br, -I) - это простые кислотные остатки, а могут - из группы атомов (-SO3, -PO4, -SiO3) - это сложные остатки.

В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:

H2SO4 + CuCl2 → CuSO4 + 2 HCl

Слово ангидрид означает безводный, то есть кислота без воды. Например,

H2SO4 - H2O → SO3. Бескислородные кислоты ангидридов не имеют.

Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H2SO4 - серная; H2SO3 - угольная; H2SiO3 - кремниевая и т.д.

Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO3 - азотная, HNO2 - азотистая.

Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:

H2 + Cl2 → 2 HCl;

Растворы полученных газообразных веществ HCl и H2S и являются кислотами.

При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.

Химические свойства кислот

1. Растворы кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются в воде. Специальные вещества - индикаторы позволяют определить присутствие кислоты.

Индикаторы - это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами. В нейтральных растворах — они имеют одну окраску, в растворах оснований - другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус - тоже в красный цвет.

2. Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):

H2SO4 + Ca(OH)2 → CaSO4 + 2 H2O.

3. Взаимодействуют с основанными оксидами с образованием воды и соли. Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:

H3PO4 + Fe2O3 → 2 FePO4 + 3 H2O.

4. Взаимодействуют с металлами.

Для взаимодействия кислот с металлами должны выполнятся некоторые условия:

1. Металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;

К, Са, Na, Мn, Аl, Zn, Fе, Ni, Sn, РЬ, Н2, Сu, Нg, Аg, Аu.

А вот реакция между раствором соляной кислоты и медью невозможна, так как медь стоит в ряду напряжений после водорода.

2. Кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H+).

При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):

Zn + 2HCl → ZnCl2 + H2;

Cu + 4HNO3 → CuNO3 + 2 NO2 + 2 H2O.

Однако, какими бы разными ни были кислоты, все они образуют при диссоциации катионы водорода, которые и обусловливают ряд общих свойств: кислый вкус, изменение окраски индикаторов (лакмуса и метилового оранжевого), взаимодействие с другими веществами.

Так же реакция протекает между оксидами металлов и большинством кислот

CuO+ H2SO4 = CuSO4+ H2O

Опишем реакции:

2) При второй реакции должна получиться растворимая соль. Во многих случаях взаимодействие металла с кислотой практически не происходит потому, что образующаяся соль нерастворима и покрывает поверхность металла зашитной пленкой, например:

Рb + H2SO4 =/ PbSO4 + H2

Нерастворимый сульфат свинца (II) прекращает доступ кислоты к металлу, и реакция прекращается, едва успев начаться. По данной причине большинство тяжелых металлов практически не взаимодействует с фосфорной, угольной и сероводородной кислотами.

3) Третья реакция характерна для растворов кислот, поэтому-нерастворимые кислоты, например кремниевая, не вступают в реакции с металлами. Концентрированный раствор серной кислоты и раствор азотной кислоты любой концентрации взаимодействуют с металлами несколько иначе, поэтому уравнения реакций между металлами и этими кислотами записываются подругой схеме. Разбавленный раствор серной кислоты взаимодействует с металлами. стоящими в ряду напряжении до водорода, образуя соль и водород.

4) Четвертая реакция является типичной реакцией ионного обмена п протекает только в том случае, если образуется осадок или газ.

Соли - это сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl - хлорид натрия, СаSO4 - сульфат кальция и т. д.

Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na+Cl - хлорид натрия

Ca2+SO42 - сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты.

Отсюда различают следующие виды солей:

1. Средние соли - все атомы водорода в кислоте замещены металлом: Na2CO3, KNO3 и т.д.

2. Кислые соли - не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO3, NaH2PO4 ит. д.

3. Двойные соли - атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO3, KAl(SO4)2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO4 - сульфат кальция, Mg SO4 - сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl - хлорид натрия, ZnCI2 - хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl3)2 - бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH2PO4 - дигидрофосфат натрия.

Соли - это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO3 = CaO + CO2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H2 SO4 → Na2SO4 + 2HCl.

3. Взаимодействуют с основаниями, образуя новую соль и новое основание:

Ba(OH)2 + Mg SO4 → BaSO4↓ + Mg(OH)2.

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO3 → AgCl + NaNO3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли.

Кислые соли

Задания на применение знаний о кислых солях встречаются в вариантах работ ЕГЭ
на разных уровнях сложности (А, В и С). Поэтому при подготовке учащихся к сдаче ЕГЭ
нужно рассмотреть следующие вопросы.

1. Определение и номенклатура.

Кислые соли – это продукты неполного замещения атомов водорода многоосновных кислот на металл. Номенклатура кислых солей отличается от средних только добавлением приставки «гидро…» или «дигидро…» к названию соли, например: NaHCO 3 – гидрокарбонат натрия, Са(Н 2 РО 4) 2 – дигидрофосфат кальция.

2. Получение.

Кислые соли получаются при взаимодействии кислот с металлами, оксидами металлов, гидроксидами металлов, солями, аммиаком, если кислота в избытке.

Например:

Zn + 2H 2 SO 4 = H 2 + Zn(HSO 4) 2 ,

CaO + H 3 PO 4 = CaHPO 4 + H 2 O,

NaOH + H 2 SO 4 = H 2 O + NaHSO 4 ,

Na 2 S + HCl = NaHS + NaCl,

NH 3 + H 3 PO 4 = NH 4 H 2 PO 4 ,

2NH 3 + H 3 PO 4 = (NH 4) 2 HPO 4 .

Также кислые соли получаются при взаимодействии кислотных оксидов со щелочами, если оксид в избытке. Например:

CO 2 + NaOH = NaHCO 3 ,

2SO 2 + Ca(OH) 2 = Ca(HSO 3) 2 .

3. Взаимопревращения.

Средняя соль кислая соль; например:

K 2 СО 3 KНСО 3 .

Чтобы из средней соли получить кислую, нужно добавить избыток кислоты или соответствующего оксида и воды:

K 2 СО 3 + Н 2 О + СО 2 = 2KНСО 3 .

Чтобы из кислой соли получить среднюю, нужно добавить избыток щелочи:

KНСО 3 + KОН = K 2 СО 3 + Н 2 О.

Гидрокарбонаты разлагаются с образованием карбонатов при кипячении:

2KНСО 3 K 2 СО 3 + Н 2 О + СО 2 .

4. Свойства.

Кислые соли проявляют свойства кислот, взаимодействуют с металлами, оксидами металлов, гидроксидами металлов, солями.

Например:

2KНSO 4 + Mg = H 2 + MgSO 4 + K 2 SO 4 ,

2KHSO 4 + MgO = H 2 O + MgSO 4 + K 2 SO 4 ,

2KHSO 4 + 2NaOH = 2H 2 O + K 2 SO 4 + Na 2 SO 4 ,

2KHSO 4 + Cu(OH) 2 = 2H 2 O + K 2 SO 4 + CuSO 4 ,

2KHSO 4 + MgCO 3 = H 2 O + CO 2 + K 2 SO 4 + MgSO 4 ,

2KHSO 4 + BaCl 2 = BaSO 4 + K 2 SO 4 + 2HCl.

5. Задачи на кислые соли. Образование одной соли.

При решении задач на избыток и недостаток нужно помнить о возможности образования кислых солей, поэтому сначала составляют уравнения всех возможных реакций. После нахождения количеств реагирующих веществ делают вывод о том, какая соль получится, и решают задачу по соответствующему уравнению.

З а д а ч а 1. Через раствор, содержащий 60 г NaOH, пропустили 44,8 л СО 2 . Найти массу образовавшейся соли.

Р е ш е н и е

(NaOH) = m /M = 60 (г)/40 (г/моль) = 1,5 моль;

(СО 2) = V /V m = 44,8 (л)/22,4 (л/моль) = 2 моль.

Поскольку (NaOH) : (CO 2) = 1,5: 2 = 0,75: 1, то делаем вывод, что СО 2 в избытке, следовательно, получится кислая соль:

NaOH + CO 2 = NaHCO 3 .

Количество вещества образовавшейся соли равно количеству вещества прореагировавшего гидроксида натрия:

(NaHCO 3) = 1,5 моль.

m (NaHCO 3) = M = 84 (г/моль) 1,5 (моль) = 126 г.

Ответ: m (NaHCO 3) = 126 г.

З а д а ч а 2. Оксид фосфора(V) массой 2,84 г растворили в 120 г 9%-й ортофосфорной кислоты. Полученный раствор прокипятили, затем к нему добавили 6 г гидроксида натрия. Найти массу полученной соли.

Дано: Найти: m (соли).
m (P 2 O 5) = 2,84 г,
m(р-ра)(H 3 PO 4) = 120 г,
(H 3 PO 4) = 9 %,
m (NaOH) = 6 г.

Р е ш е н и е

(P 2 O 5) = m /M = 2,84 (г)/142 (г/моль) = 0,02 моль,

следовательно, 1 (H 3 PO 4 получ.) = 0,04 моль.

m (H 3 PO 4) = m (р-ра) = 120 (г) 0,09 = 10,8 г.

2 (H 3 PO 4) = m /M = 10,8 (г)/98 (г/моль) = 0,11 моль,

(H 3 PO 4) = 1 + 2 = 0,11 + 0,04 = 0,15 моль.

(NaOH) = m /M = 6 (г)/40 (г/моль) = 0,15 моль.

Поскольку

(H 3 PO 4) : (NaOH) = 0,15: 0,15 = 1: 1,

то получится дигидрофосфат натрия:

(NaH 2 PO 4) = 0,15 моль,

m (NaH 2 PO 4) = M = 120 (г/моль) 0,15 (моль) = 18 г.

Ответ: m (NaH 2 PO 4) = 18 г.

З а д а ч а 3. Сероводород объемом 8,96 л пропустили через 340 г 2%-го раствора аммиака. Назовите соль, получившуюся в результате реакции, и определите ее массу.

Ответ: гидросульфид аммония,
m (NH 4 HS) = 20,4 г.

З а д а ч а 4. Газ, полученный при сжигании 3,36 л пропана, прореагировал с 400 мл 6%-го раствора гидроксида калия ( = 1,05 г/мл). Найти состав полученного раствора и массовую долю соли в полученном растворе.

Ответ: (KНСО 3) = 10,23 %.

З а д а ч а 5. Весь углекислый газ, полученный при сжигании 9,6 кг угля, пропустили через раствор, содержащий 29,6 кг гидроксида кальция. Найти массу полученной соли.

Ответ: m (Ca(HCO 3) 2) = 64,8 кг.

З а д а ч а 6. В 9,8 кг 20%-го раствора серной кислоты растворили 1,3 кг цинка. Найти массу полученной соли.

Ответ: m (ZnSO 4) = 3,22 кг.

6. Задачи на кислые соли. Образование смеси двух солей.

Это более сложный вариант задач на кислые соли. В зависимости от количества реагирующих веществ возможно образование смеси двух солей.

Например, при нейтрализации оксида фосфора(V) щелочью в зависимости от молярного соотношения реагентов могут образоваться следующие продукты:

P 2 O 5 + 6NaOH = 2Na 3 PO 4 + 3H 2 O,

(P 2 O 5):(NaOH) = 1:6;

P 2 O 5 + 4NaOH = 2Na 2 HPO 4 + H 2 O,

(P 2 O 5):(NaOH) = 1:4;

P 2 O 5 + 2NaOH + H 2 O = 2NaH 2 PO 4 ,

(P 2 O 5):(NaOH) = 1:2.

Следует помнить, что при неполной нейтрализации возможно образование смеси двух соединений. При взаимодействии 0,2 моль Р 2 О 5 с раствором щелочи, содержащим 0,9 моль NaOH, молярное соотношение находится между 1:4 и 1:6. В этом случае образуется смесь двух солей: фосфата натрия и гидрофосфата натрия.

Если раствор щелочи будет содержать 0,6 моль NaOH, то молярное соотношение будет другим: 0,2:0,6 = 1:3, оно находится между 1:2 и 1:4, поэтому получится смесь двух других солей: дигидрофосфата и гидрофосфата натрия.

Эти задачи можно решать разными способами. Мы будем исходить из предположения, что одновременно происходят две реакции.

А л г о р и т м р е ш е н и я

1. Составить уравнения всех возможных реакций.

2. Найти количества реагирующих веществ и по их соотношению определить уравнения двух реакций, которые происходят одновременно.

3. Обозначить количество одного из реагирующих веществ в первом уравнении как х моль, во втором – у моль.

4. Выразить через х и у количества другого реагирующего вещества согласно молярным соотношениям по уравнениям.

5. Составить систему уравнений с двумя неизвестными.

З а д а ч а 1. Оксид фосфора(V), полученный при сжигании 6,2 г фосфора, пропустили через 200 г 8,4%-го раствора гидроксида калия. Какие вещества и в каких количествах получаются?

Дано: Найти: 1 ; 2 .
m (P) = 6,2 г,
m (р-ра KОН) = 200 г,
(KОН) = 8,4 %.

Р е ш е н и е

(P) = m /M = 6,2 (г)/31 (г/моль) = 0,2 моль,

Ответ. ((NH 4) 2 HPO 4) = 43,8 %,
(NH 4 H 2 PO 4) = 12,8 %.

З а д а ч а 4. К 50 г раствора ортофосфорной кислоты с массовой долей 11,76 % прибавили 150 г раствора гидроксида калия с массовой долей 5,6 %. Найти состав остатка, полученного при выпаривании раствора.

Ответ: m (K 3 PO 4) = 6,36 г,
m (K 2 HPO 4) = 5,22 г.

З а д а ч а 5. Сожгли 5,6 л бутана (н.у.) и образовавшийся углекислый газ пропустили через раствор, содержащий 102,6 г гидроксида бария. Найти массы полученных солей.

Ответ: m (BaCO 3) = 39,4 г,
m (Ba(HCO 3) 2) = 103,6 г.

1. Соли являются электролитами.

В водных растворах соли диссоциируют на положительно заряженные ионы (катионы) металлов и отрицательно заряженные ионы (анионы) кислотных остатков.

Например , при растворении кристаллов хлорида натрия в воде положительно заряженные ионы натрия и отрицательно заряженные ионы хлора, из которых образована кристаллическая решётка этого вещества, переходят в раствор:

NaCl → Na + + Cl − .

При электролитической диссоциации сульфата алюминия образуются положительно заряженные ионы алюминия и отрицательно заряженные сульфат-ионы:

Al 2 SO 4 3 → 2 Al 3 + + 3 SO 4 2 − .

2. Соли могут взаимодействовать с металлами.

В ходе реакции замещения, протекающей в водном растворе, химически более активный металл вытесняет менее активный.

Например , если кусочек железа поместить в раствор сульфата меди, он покрывается красно-бурым осадком меди. Раствор постепенно меняет цвет с синего на бледно-зелёный, поскольку образуется соль железа(\(II\)):

Fe + Cu SO 4 → Fe SO 4 + Cu ↓ .

Видеофрагмент:

При взаимодействии хлорида меди(\(II\)) с алюминием образуются хлорид алюминия и медь:
2 Al + 3Cu Cl 2 → 2Al Cl 3 + 3 Cu ↓ .

3. Соли могут взаимодействовать с кислотами.

Протекает реакция обмена, в ходе которой химически более активная кислота вытесняет менее активную.

Например , при взаимодействии раствора хлорида бария с серной кислотой образуется осадок сульфата бария, а в растворе остаётся соляная кислота:
BaCl 2 + H 2 SO 4 → Ba SO 4 ↓ + 2 HCl .

При взаимодействии карбоната кальция с соляной кислотой образуются хлорид кальция и угольная кислота, которая тут же разлагается на углекислый газ и воду:

Ca CO 3 + 2 HCl → CaCl 2 + H 2 O + CO 2 ⏟ H 2 CO 3 .

Видеофрагмент:

4. Растворимые в воде соли могут взаимодействовать со щелочами.

Реакция обмена возможна в том случае, если в результате хотя бы один из продуктов является практически нерастворимым (выпадает в осадок).

Например , при взаимодействии нитрата никеля(\(II\)) с гидроксидом натрия образуются нитрат натрия и практически нерастворимый гидроксид никеля(\(II\)):
Ni NO 3 2 + 2 NaOH → Ni OH 2 ↓ + 2Na NO 3 .

Видеофрагмент:

При взаимодействии карбоната натрия (соды) с гидроксидом кальция (гашёной известью) образуются гидроксид натрия и практически нерастворимый карбонат кальция:
Na 2 CO 3 + Ca OH 2 → 2NaOH + Ca CO 3 ↓ .

5. Растворимые в воде соли могут вступать в реакцию обмена с другими растворимыми в воде солями, если в результате образуется хотя бы одно практически нерастворимое вещество.

Например , при взаимодействии сульфида натрия с нитратом серебра образуются нитрат натрия и практически нерастворимый сульфид серебра:
Na 2 S + 2Ag NO 3 → Na NO 3 + Ag 2 S ↓ .

Видеофрагмент:

При взаимодействии нитрата бария с сульфатом калия образуются нитрат калия и практически нерастворимый сульфат бария:
Ba NO 3 2 + K 2 SO 4 → 2 KNO 3 + BaSO 4 ↓ .

6. Некоторые соли при нагревании разлагаются.

Причём химические реакции, которые протекают при этом, можно условно разделить на две группы:

  • реакции, в ходе которых элементы не изменяют степень окисления,
  • окислительно-восстановительные реакции.

A. Реакции разложения солей, протекающие без изменения степени окисления элементов.

В качестве примеров таких химических реакций рассмотрим, как протекает разложение карбонатов.

При сильном нагревании карбонат кальция (мел, известняк, мрамор) разлагается, образуя оксид кальция (жжёную известь) и углекислый газ:
CaCO 3 ⇄ t ° CaO + CO 2 .

Видеофрагмент:

Гидрокарбонат натрия (пищевая сода) при небольшом нагревании разлагается на карбонат натрия (соду), воду и углекислый газ:
2 NaHCO 3 ⇄ t ° Na 2 CO 3 + H 2 O + CO 2 .

Видеофрагмент:

Кристаллогидраты солей при нагревании теряют воду. Например, пентагидрат сульфата меди(\(II\)) (медный купорос), постепенно теряя воду, превращается в безводный сульфат меди(\(II\)):
CuSO 4 ⋅ 5 H 2 O → t ° Cu SO 4 + 5 H 2 O .

При обычных условиях образовавшийся безводный сульфат меди можно превратить в кристаллогидрат:
CuSO 4 + 5 H 2 O → Cu SO 4 ⋅ 5 H 2 O

Видеофрагмент:

Разрушение и образование медного купороса

Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO 4 – сульфат кальция и т. д.

Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na + Cl – – хлорид натрия

Ca 2+ SO 4 2– – сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей:

1. Средние соли – все атомы водорода в кислоте замещены металлом: Na 2 CO 3 , KNO 3 и т.д.

2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO 3 , NaH 2 PO 4 ит. д.

3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO 3 , KAl(SO 4) 2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO 4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO 4 – сульфат кальция, Mg SO 4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI 2 – хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl 3) 2 – бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH 2 PO 4 – дигидрофосфат натрия.

Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO 3 = CaO + CO 2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H 2 SO 4 → Na 2 SO 4 + 2HCl.

3. Взаимодействуют с основаниями , образуя новую соль и новое основание:

Ba(OH) 2 + Mg SO 4 → BaSO 4 ↓ + Mg(OH) 2 .

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO 3 → AgCl + NaNO 3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

Fe + CuSO 4 → FeSO 4 + Cu↓.

Остались вопросы? Хотите знать больше о солях?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Каждый день мы сталкиваемся с солями и даже не задумываемся, какую роль они играют в нашей жизни. А ведь без них и вода была бы не такой вкусной, и пища не приносила бы удовольствия, и растения не росли, да и жизнь на земле не могла бы существовать, не будь в нашем мире соли. Так что же это за вещества и какие свойства солей делают их незаменимыми?

Что такое соли

По своему составу это самый многочисленный класс, отличающийся разнообразием. Еще в 19 веке химик Й. Верцелиус дал определение соли — это продукт реакции между кислотой и основанием, при которой водородный атом заменяется металлическим. В воде обычно соли диссоциируют на металл или аммоний (катион) и кислотный остаток (анион).

Получить соли можно следующими способами:

  • путем взаимодействия металла и неметалла, в этом случае она будет бескислородная;
  • при взаимодействии металла с кислотой получается соль и выделяется водород;
  • металл может вытеснять другой металл из раствора;
  • при взаимодействии двух оксидов — кислотного и основного (еще их называют оксидом неметалла и оксидом металла соответственно);
  • при реакции оксида металла и кислоты получаются соль и вода;
  • реакция между основанием и оксидом неметалла также дает соль и воду;
  • с помощью реакции ионного обмена, при этом могут реагировать разные растворимые в воде вещества (основания, кислоты, соли), но протекать реакция будет, если образуется газ, вода или соли слаборастворимые (нерастворимые) в воде.

Только от химического состава свойства солей и зависят. Но для начала разберемся в их классах.

Классификация

В зависимости от состава выделяют следующие классы солей:

  • по содержанию кислорода (кислородсодержащие и бескислородные);
  • по взаимодействию с водой (растворимые, малорастворимые и нерастворимые).

Такая классификация отражает все многообразие веществ не полностью. Современная и наиболее полная классификация, отражающая не только состав, но и свойства солей, представлена в следующей таблице.

Соли
Нормальные Кислые Основные Двойные Смешанные Комплексные
Водород полностью замещен Атомы водорода замещены на металл не полностью Группы оснований замещены на кислотный остаток не полностью В составе два металла и один кислотный остаток В составе один металл и два кислотных остатка Сложные вещества, состоящие из комплексного катиона и аниона или катиона и комплексного аниона
NaCl KHSO 4 FeOHSO 3 KNaSO 4 CaClBr SO 4

Физические свойства

Как бы ни был широк класс этих веществ, но общие физические свойства солей выделить возможно. Это вещества немолекулярного строения, с ионной кристаллической решеткой.

Очень высокие точки плавления и кипения. При нормальных условиях все соли не проводят электричество, но в растворе большинство из них прекрасно проводит ток.

Цвет может быть самым разным, он зависит от иона металла, входящего в ее состав. Сульфат железа (FeSO 4) — зеленый, хлорид железа (FeCl 3) — темно-красный, а хромат калия (K 2 CrO 4) красивого ярко-желтого цвета. Но большинство солей все-таки бесцветные или белые.

Растворимость в воде также бывает различной и зависит от состава ионов. В принципе, все физические свойства солей имеют особенность. Они зависят от того, ион какого металла и какой кислотный остаток включены в состав. Продолжим рассматривать соли.

Химические свойства солей

Здесь тоже есть важная особенность. Как и физические, химические свойства солей зависят от их состава. А также от того, к какому классу они относятся.

Но общие свойства солей можно все-таки выделить:

  • многие из них разлагаются при нагревании с образованием двух оксидов: кислотного и основного, а бескислородные — металла и неметалла;
  • взаимодействуют соли и с другими кислотами, но реакция идет, только если в составе соли кислотный остаток слабой или летучей кислоты или в результате получается нерастворимая соль;
  • взаимодействие со щелочью возможно, если катион образует нерастворимое основание;
  • возможна реакция и между двумя разными солями, но только если одна из вновь образовавшихся солей не растворяется в воде;
  • может происходить и реакция с металлом, но она возможна, только если брать металл, расположенный правее в ряду напряжения от металла, содержащегося в соли.

Химические свойства солей, относящихся к нормальным, рассмотрены выше, другие же классы реагируют с веществами несколько иначе. Но отличие идет только по продуктам на выходе. В основном все химические свойства солей сохраняются, как и требования к протеканию реакций.