Сравнение деления митоза и мейоза. Краткое описание стадий и схемы деления клеток посредством митоза

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

Мейоз – это способ деления клеток эукариот, при котором образуются гаплоидные клетки. Этим мейоз отличается от митоза, при котором образуются диплоидные клетки.

Кроме того, мейоз протекает в два следующих друг за другом деления, которые называют соответственно первым (мейоз I) и вторым (мейоз II). Уже после первого деления клетки содержат одинарный, т. е. гаплоидный, набор хромосом. Поэтому первое деление часто называют редукционным . Хотя иногда термин «редукционное деление» применяют по отношению ко всему мейозу.

Второе деление называется эквационным и по механизму протекания сходно с митозом. В мейозе II к полюсам клетки расходятся сестринские хроматиды.

Мейозу, как и митозу, в интерфазе предшествует синтез ДНК – репликация, после которой каждая хромосома состоит уже из двух хроматид, которые называют сестринскими. Между первым и вторым делениями синтеза ДНК не происходит.

Если в результате митоза образуются две клетки, то в результате мейоза – 4. Однако если организм производит яйцеклетки, то остается только одна клетка, сконцентрировавшая в себе питательные вещества.

Количество ДНК перед первым делением принято обозначать как 2n 4c. Здесь n обозначает хромосомы, c – хроматиды. Это значит, что каждая хромосома имеет гомологичную себе пару (2n), в то же время каждая хромосома состоит из двух хроматид. С учетом наличия гомологичной хромосомы получается четыре хроматиды (4c).

После первого и перед вторым делением количество ДНК в каждой из двух дочерних клетках сокращается до 1n 2c. То есть гомологичные хромосомы расходятся в разные клетки, но продолжают состоять из двух хроматид.

После второго деления образуются четыре клетки с набором 1n 1c, т. е. в каждой присутствует только одна хромосома из пары гомологичных и состоит она только из одной хроматиды.

Ниже приводится подробное описание первого и второго мейотического деления. Обозначение фаз такое же как при митозе: профаза, метафаза, анафаза, телофаза. Однако протекающие в эти фазы процессы, особенно в профазе I, несколько отличаются.

Мейоз I

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).


Конъюгация - процесс сцепления гомологичных хромосом. Кроссинговер - обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма .

Спаренные гомологичные хромосомы называются бивалентами , или тетрадами . Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие - к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II

Интерфаза между двумя мейотическими делениями называется интеркинезом , он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.


Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизм а полового размножения, при котором сохраняется постоянство числа хромосом у вида .

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов , благодаря которой возможна эволюция живых организмов.

Митоз (наряду со стадией цитокинеза) - процесс, в результате которого эукариотическая соматическая (или клетка тела) делится на две идентичные .

Мейоз - другой тип деления клеток, который начинается с одной клетки, имеющей правильное количество хромосом и заканчивается образованием четырех клеток с уменьшенным в двое количеством хромосом ().

У людей практически все клетки подвергаются митозу. Единственными клетками человека, которые делятся при помощи мейоза, являются или (яйцеклетка у женщин и сперма у мужчин).

Гаметы имеют только половину относительно клеток тела, потому что когда половые клетки сливаются во время оплодотворения, результирующая клетка (называемая зиготой) имеет правильное количество хромосом. Вот почему потомство представляет собой смесь генетики матери и отца (гаметы отца содержат одну половину хромосом, а гаметы матери - другую).

Хотя митоз и мейоз дают очень разные результаты, эти процессы довольно схожи и протекают с небольшими различиями на основных этапах. Давайте разберем основные отличия митоза и мейоза, чтобы лучше понять, как они работают.

Оба процесса начинаются после того, как клетка проходит через интерфазу и синтезирует ДНК на стадии S-фазы (или фазы синтеза). В этот момент каждая хромосома состоит из сестринских хроматид, которые удерживаются вместе .

Митотическая анафаза отделяет одинаковые сестринские хроматиды, поэтому идентичная генетика будет в каждой клетке. В анафазе I сестринские хроматиды, не идентичны, так как подверглись переходу во время профазы I. В анафазе I сестринские хроматиды остаются вместе, но гомологичные пары хромосом раздвигаются и переносятся на противоположные полюса клетки.

Телофаза

Заключительный этап называется телофазой. В митотической телофазе и телофазе II большая часть того, что было сделано во время профазы, будет отменено. Веретено деление разрушается и исчезает, образовывается ядерная оболочка, хромосомы распутываться, а клетка готовится к разделению во время цитокинеза.

В этот момент митотическая телофаза переходит в цитокинез, результатом которого будут две идентичные диплоидные клетки. Телофаза II уже прошла одно деление в конце мейоза I, поэтому она войдет в цитокинез, чтобы сделать в общей сложности четыре гаплоидных клетки. В телофазе I подобные события наблюдаться в зависимости от типа клетки. Веретено разрушается, но новая ядерная оболочка не формируется, а хромосомы могут оставаться плотно спутанными. Кроме того, некоторые клетки переходят сразу в профазу II вместо разделения на две клетки посредством цитокинеза.

Таблица основных различий между митозом и мейозом

Сравниваемые характеристики Митоз Мейоз
Деление клеток Соматическая клетка делится один раз. Цитокинез (разделение ) происходит в конце телофазы. Половая клетка, как правило делится дважды. Цитокинез происходит в конце телофазы I и телофазы II.
Дочерние клетки Производится две дочерние диплоидные клетки, содержащие полный набор хромосом. Производится четыре . Каждая клетка представляет собой гаплоид, содержащий половину числа хромосом от родительской клетки.
Генетическая композиция Полученные в митозе дочерние клетки являются генетическими клонами (они генетически идентичны). Не происходит рекомбинации или перекрестка. Полученные в мейозе дочерние клетки содержат различные комбинации генов. Генетическая рекомбинация происходит в результате случайной сегрегации гомологичных хромосом в разные клетки и путем перехода (переноса генов между гомологичными хромосомами).
Длительность профазы Во время первой митотической стадии, известной как профаза, конденсируется в дискретные хромосомы, ядерная оболочка ломается, а волокна веретена деления формируются на противоположных полюсах клетки. Клетка проводит меньше времени в профазе митоза, чем клетка в профазе I мейоза. Профаза I состоит из пяти этапов и длится дольше, чем профаза митоза. Этапы мейотической профазы I включают: лептотен, зиготен, пахитен, диплотен и диакинез. Эти пять стадий не происходят при митозе. Генетическая рекомбинация и скрещивание происходят во время профазы I.
Образование тетрада (бивалента) Тетрада не образовывается. В профазе I пары гомологичных хромосом выстраиваются близко друг к другу, образуя так называемую тетраду, которая состоит из четырех хроматид (два набора сестринских хроматид).
Согласование хромосом в метафазе Сестринские хроматиды (дублированная хромосома, состоящая из двух идентичных хромосом, соединенных в области центромера) выровнены на метафазной пластине (плоскость, которая одинаково удалена от двух полюсов клетки). Тетрада гомологичных хромосом выравнивается на метафазной пластинке в метафазе I.
Разделение хромосом Во время анафазы сестринские хроматиды разделяются и начинают мигрировать к противоположным полюсам клетки. Отделяемая сестринская хроматида становится полной хромосомой дочерней клетки. Гомологичные хромосомы мигрируют к противоположным полюсам клетки во время анафазы I. Сестринские хроматиды не разделяются в анафазе I.

Митоз и мейоз в эволюции

Обычно мутации в ДНК соматических клеток, которые подвергаются митозу, не передаются потомству и поэтому не применимы к естественному отбору и не способствуют вида. Однако ошибки в мейозе и случайное смешивание генов и хромосом в течение всего процесса, действительно способствуют генетическому разнообразию и приводит к эволюции. Пересечение создает новую комбинацию генов, которые могут кодировать благоприятную адаптацию.

Кроме того, независимый ассортимент хромосом во время метафазы I также приводит к генетическому разнообразию. Гомологичные пары хромосом выстраиваются в линию на этом этапе, поэтому смешивание и сопоставление признаков имеет много вариантов, что способствует разнообразию. Наконец, случайное также может увеличить генетическое разнообразие. Поскольку в конце мейоза II образовывается четыре генетически разных гамета, которые фактически используются во время оплодотворения. По мере того, как имеющиеся признаки смешиваются и передаются, естественный отбор воздействует на них и выбирает наиболее благоприятные адаптации в качестве предпочтительных индивидуумов.

Развитие и рост живых организмов невозможен без процесса деления клеток. В природе существует несколько видов и способов деления. В данной статье мы кратко и понятно расскажем о митозе и мейозе, разъясним основное значение этих процессов, познакомим с тем, чем отличаются они, а чем схожи.

Митоз

Процесс непрямого деления, или митоз, чаще всего встречается в природе. На нём основывается деление всех существующих неполовых клеток, а именно мышечных, нервных, эпителиальных и прочих.

Состоит митоз из четырёх фаз: профазы, метафазы, анафазы и телофазы. Основная роль данного процесса - равномерное распределение генетического кода от родительской клетки к двум дочерним. При этом клетки нового поколения один к одному схожи с материнскими.

Рис. 1. Схема митоза

Время между процессами деления называются интерфазой . Чаще всего интерфаза гораздо длиннее митоза. Для этого периода характерны:

  • синтез белка и молекулы АТФ в клетке;
  • удваивание хромосом и образование двух сестринских хроматид;
  • увеличение числа органоидов в цитоплазме.

Мейоз

Деление половых клеток называется мейозом, оно сопровождается уменьшением числа хромосом вдвое. Особенность данного процесса состоит в том, что проходит он в два этапа, которые непрерывно следуют друг за другом.

ТОП-4 статьи которые читают вместе с этой

Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна.

Рис. 2. Схема мейоза

Биологическим значением мейоза является образование чистых гамет, которые содержат гаплоидный, другими словами одинарный, набор хромосом. Диплоидность восстанавливается после оплодотворения, то есть слияния материнской и отцовской клетки. В результате слияния двух гамет образуется зигота с полным набором хромосом.

Уменьшение числа хромосом при мейозе очень важно, так как в противном случае при каждом делении число хромосом увеличивалось бы. Благодаря редукционному делению поддерживается постоянное число хромосом.

Сравнительная характеристика

Отличие митоза и мейоза состоит в продолжительности фаз и происходящих в них процессах. Ниже предлагаем вам таблицу «Митоз и мейоз», где указаны основные различия двух способов деления. Фазы мейоза такие же, как и у митоза. Подробнее узнать о сходствах и различиях двух процессов вы сможете в сравнительной характеристике.

Фазы

Митоз

Мейоз

Первое деление

Второе деление

Интерфаза

Набор хромосом материнской клетки диплоидный. Синтезируется белок, АТФ и органические вещества. Хромосомы удваиваются, образуются две хроматиды, соединённые центромерой.

Диплоидный набор хромосом. Происходят те же действия, что и при митозе. Отличием является продолжительность, особенно при образовании яйцеклеток.

Гаплоидный набор хромосом. Синтез отсутствует.

Непродолжительная фаза. Растворяются ядерные мембраны и ядрышко, формируется веретено деления.

Занимает больше времени, чем при митозе. Также исчезают ядерная оболочка и ядрышко, формируется веретено деления. Помимо этого наблюдается процесс конъюгации (сближение и слияние гомологичных хромосом). При этом происходит кроссинговер - обмен генетической информации на некоторых участках. После хромосомы расходятся.

По продолжительности - короткая фаза. Процессы такие же, как и при митозе, только с гаплоидными хромосомами.

Метафаза

Наблюдается спирализация и расположение хромосом в экваториальной части веретена.

Аналогично митозу

Тоже, что и при митозе, только с гаплоидным набором.

Центромеры делятся на две самостоятельные хромосомы, которые расходятся к разным полюсам.

Деление центромер не происходит. К полюсам отходит одна хромосома, состоящая из двух хроматид.

Аналогично митозу, только с гаплоидным набором.

Телофаза

Цитоплазма делится на две одинаковые дочерние клетки с диплоидным набором, образуются ядерные мембраны с ядрышками. Веретено деления исчезает.

По длительности непродолжительная фаза. Гомологичные хромосомы располагаются в разных клетках с гаплоидным набором. Цитоплазма делится не во всех случаях.

Цитоплазма делится. Образуется четыре гаплоидные клетки.

Рис. 3. Сравнительная схема митоза и мейоза

Что мы узнали?

В природе деление клеток отличается в зависимости от их назначения. Так, например, неполовые клетки делятся путём митоза, а половые - мейоза. Эти процессы имеют схожие схемы деления на некоторых этапах. Главным отличием является наличие числа хромосом у образованного нового поколения клеток. Так при митозе у новообразованного поколения диплоидный набор, а при мейозе гаплоидный набор хромосом. Время протекания фаз деления также отличаются. Огромную роль в жизнедеятельности организмов играют оба способа деления. Без митоза не проходит ни одно обновление старых клеток, репродукция тканей и органов. Мейоз помогает поддерживать постоянное количество хромосом в новообразованном организме при размножении.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 3417.

Проработав эти темы, Вы должны уметь:

  1. Перечислить уровни организации живой материи и признаки, характеризующие живой организм.
  2. Кратко рассказать о том, как происходит репликация ДНК.
  3. Описать строение хромосомы эукариотической клетки.
  4. Перечислить основные события митоза и охарактеризовать функцию митоза при клеточном делении.
  5. Указать отличие митоза от мейоза.
  6. Рассказать о значении мейоза и оплодотворения в осуществлении преемственности между поколениями.
  7. Указать закономерности индивидуального развития.
  8. Обсудить преимущества, имеющиеся у организмов с чередованием полового и бесполого размножения на протяжении жизненного цикла.
  9. Рассказать о преимуществах и недостатках полового размножения по сравнению с бесполым.
  10. Привести доказательства в пользу гипотезы о том, что почти при всех системах скрещивания право выбора принадлежит самке.
  11. Рассмотреть возможные причины моногамии у человека.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000