Строение и функции сетчатки глаза.

Прошло немало лет, прежде чем был достигнут существенный прогресс в физиологии рецепторов, биполяров, горизонтальных и амакриновых клеток. Тому было множество причин: пульсация сосудов постоянно мешала попыткам удерживать микроэлектрод в одиночной клетке или рядом с ней; рецепторы, биполяры и горизонтальные клетки не генерируют импульсов, поэтому регистрация намного меньших градуальных потенциалов требует применения внутриклеточных методик; трудно с уверенностью сказать, в клетке какого типа (или рядом с какой клеткой) находится электрод. Некоторые из этих затруднений можно преодолеть надлежащим выбором животного; например, сетчатки холоднокровных позвоночных способны выживать, будучи извлечены из глаза и погружены в солевой раствор, насыщенный кислородом, и при этом отсутствие кровообращения исключает пульсацию артерий; у протея (род крупных саламандр) очень большие клетки, их активность легко регистрировать; рыбы, лягушки, черепахи, кролики и кошки - все эти животные имеют свои преимущества при исследованиях того или иного типа, поэтому при изучении физиологии сетчатки использовались разные виды. Трудность при работе с таким большим числом видов состоит в том, что детали организации сетчатки могут заметно различаться у разных животных. Кроме того, наши представления о сетчатке приматов, реакции которой трудно регистрировать, до недавнего времени в значительной мере основывались на результатах, полученных на других видах. Однако по мере преодоления технических трудностей ускоряется и прогресс исследований на приматах.

В последние годы изучение реакции палочек и колбочек на свет очень сильно продвинулось вперед, и появилось ощущение, что мы начинаем понимать, как они работают.

Палочки и колбочки различаются во многих отношениях. Наиболее важно различие в их относительной чувствительности: палочки чувствительны к очень слабому свету, колбочки требуют намного более яркого освещения. Я уже описывал различия в их распределении по сетчатке, наиболее заметное из них - отсутствие палочек в центральной ямке. Они различны и по форме: палочки длинные и тонкие, а колбочки короткие и конусообразные. Как палочки, так и колбочки содержат светочувствительные пигменты. Во всех палочках пигмент один и тот же; колбочки делятся на три типа, каждый из них со своим особым зрительным пигментом. Эти четыре пигмента чувствительны к различным длинам световых волн, и в случае колбочек эти различия составляют основу цветового зрения.

Под воздействием света в рецепторах происходит процесс, называемый выцветанием. В этом процессе молекула зрительного пигмента поглощает фотон - единичный квант видимого света - и при этом химически превращается в другое соединение, хуже поглощающее свет или, быть может, чувствительное к другим длинам волн. Практически у всех животных, от насекомых до человека, и даже у некоторых бактерий этот рецепторный пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A; она и представляет собой химически трансформируемую светом часть. Благодаря главным образом работам Джорджа Уолда из Гарварда, проведенным в 50-х годах, нам теперь многое известно о химии выцветания и последующего восстановления зрительных пигментов.


Рис. 30. Этот срез периферической части сетчатки обезьяны проходит через слой палочек и колбочек. Маленькие белые пятнышки - палочки; более крупные черные участки с белыми точками в центре - колбочки.

Большинство обычных сенсорных рецепторов - химических, температурных или механических - деполяризуется в ответ на соответствующий стимул, т.е. они реагируют на возбуждающий стимул так же, как обычные нейроны ; деполяризация ведет к высвобождению медиатора из аксонных окончаний (часто, как и в случае зрительных рецепторов, это не приводит к возникновению импульсов, вероятно из-за очень малой длины аксона). У беспозвоночных, от усоногих раков до насекомых, световые рецепторы ведут себя таким же образом, и до 1964 года предполагалось, что аналогичный механизм - деполяризация под влиянием света - действует также в палочках и колбочках позвоночных.

В 1964 году японскому нейрофизиологу Цунео Томита, работавшему в университете Кейо в Токио, впервые удалось ввести микроэлектрод в колбочки сетчатки рыбы и получить столь неожиданный результат, что у многих современников он вызывал вначале серьезные сомнения. В темноте потенциал на мембране колбочки оказался необычайно низким для нервной клетки: приблизительно 50 милливольт вместо обычных 70. При освещении колбочки этот потенциал возрастал - мембрана гиперполяризовалась - в противоположность тому, чего следовало бы ожидать. В темноте фоторецепторы позвоночных явно больше деполяризованы (имеют более низкий мембранный потенциал), чем обычные нервные клетки в состоянии покоя, и деполяризация вызывает непрерывное высвобождение медиатора из окончаний их аксонов - в точности так, как это происходит в обычных рецепторах при стимуляции. Свет, повышая потенциал на мембране рецепторной клетки (т.е. гиперполяризуя ее), уменьшает выделение медиатора. Таким образом, стимуляция, как это ни странно на первый взгляд, выключает рецепторы. Открытие Томита помогает нам объяснить, почему волокна зрительного нерва у позвоночных столь активны в темноте: спонтанную активность проявляют именно рецепторы; многие биполярные и ганглиозные клетки, вероятно, делают попросту то, что им диктуют рецепторные клетки.

В последующие десятилетия главные задачи состояли в том, чтобы выяснить, как свет вызывает гиперполяризацию рецептора и в особенности каким образом выцветание всего одной молекулы зрительного пигмента под действием одного фотона может привести в палочке к измеримому изменению мембранного потенциала. В настоящее время оба процесса достаточно хорошо поняты. Гиперполяризация на свету вызывается перекрытием потока ионов. В темноте часть рецепторной мембраны более проницаема для ионов натрия, чем остальная мембрана. Поэтому ионы натрия непрерывно входят здесь в клетку, а где-то в другом месте ионы калия выходят наружу. Поток ионов в темноте, или темновой ток, открыли в 1970 году Уильям Хейгинс, Ричард Пенн и Шуко Йосиками в Национальном институте артрита и нарушений метаболизма в Бетезде. Он вызывает деполяризацию покоящегося рецептора и тем самым - его постоянную активность. В результате выцветания зрительного пигмента на свету поры для натрия закрываются, темновой ток уменьшается и степень деполяризации мембраны становится меньше, т.е. клетка гиперполяризуется. Ее активность (высвобождение ею медиатора) ослабевает.


Рис. 31. Одиночная колбочка (слева) и две палочки с колбочкой (справа) были отпрепарированы и окрашены осмиевой кислотой. Тонкий отросток наверху каждой клетки - наружный сегмент, содержащий зрительный пигмент. Волокна внизу идут к не показанным здесь синаптическим областям.

В настоящее время в результате работ Евгения Фесенко с сотрудниками в Академии наук в Москве, Дениса Бейлора в Стэнфордском университете, Кин-Вай Яу в Техасском университете и других мы намного ближе подошли к пониманию связи между выцветанием пигмента и закрытием натриевых пор. Например, очень трудно было представить себе, как выцветание единственной молекулы могло бы привести к закрытию миллионов пор, необходимому для наблюдаемых изменений потенциала. В настоящее время выяснилось, что поры в рецепторе открываются с помощью молекул вещества, называемого циклическим гуанозинмонофосфатом (цГМФ). Выцветание молекулы зрительного пигмента приводит к целому каскаду событий. Белковая часть обесцвеченной молекулы пигмента активирует большое число молекул фермента трансдуцина, а каждая из них в свою очередь инактивирует сотни молекул цГМФ, обычно участвующих в открытии пор. Так в результате выцветания одной молекулы пигмента закрываются миллионы пор.

Все это позволяет объяснить ряд явлений, бывших ранее загадочными. Во-первых, давно известно, что человек, адаптировавшийся к полной темноте, способен увидеть такую слабую вспышку света, при которой ни один рецептор не может получить более одного фотона. Как показывают расчеты, для ощущения вспышки нужно, чтобы в короткий промежуток времени около шести близко расположенных палочек были стимулированы фотонами. Теперь становится понятно, как одиночный фотон может возбудить палочку и заставить ее генерировать сигнал достаточной силы.

Во-вторых, мы теперь можем объяснить неспособность палочек реагировать на изменения освещенности, если свет уже достаточно ярок. По-видимому, чувствительность палочек столь высока, что при сильной освещенности, например при солнечном свете, все натриевые поры закрыты, и дальнейшее усиление света может не давать никакого дополнительного эффекта. Тогда мы говорим, что палочки насыщены.

Быть может, спустя несколько лет студенты-биологи будут видеть во всей этой повести о рецепторах просто еще одну вещь, которую нужно выучить. Надеюсь, однако, что этого не произойдет. Чтобы полностью оценить ее значение, надо было потратить многие годы, гадая о том, каким образом могут работать рецепторы, а затем внезапно - меньше чем за десяток лет - в результате эффектных исследований решить эту проблему. Волнение по этому поводу еще не стихло.

<<< Назад
Вперед >>>

Мозг через орган зрения получает более 90% сенсорной информации. Фоторецепторы сетчатки глаза из всего спектра электромагнитных излучений регистрируют только волны длиной от 400 до 800 нм. Физиологическая роль глаза как органа зрения двояка. Во-первых, это оптический инструмент, собирающий свет от объектов внешней среды и проецирующий их изображения на сетчатку. Во-вторых, фоторецепторы сетчатки преобразуют оптические изображения в нервные сигналы, передаваемые в зрительную кору.

1. Основные зрительные функции:

Светочувствительность – способность различать разные интенсивности диффузного освещения;

Цветовое зрение – различение длин волн в пределах видимого спектра;

Распознавание формы – основано на фокусировке предмета на сетчатке;

Восприятие движения – происходит в результате движения сфокусированного изображения объекта на рецепторном поле как на экране;

Восприятие глубины – основано на объединении информации от двух глаз.

2. Структурные особенности зрительного анализатора.

Отделы зрительного анализатора:

периферический отдел – оптический аппарат глаза и сетчатка;

проводниковый отдел;

корковый отдел.

Орган зрения включает глазное яблоко , соединённое через зрительный нерв с мозгом, защитный аппарат (в том числе веки и слёзные железы) и аппарат движения (поперечнополосатые глазодвигательные мышцы).

Глазное яблоко . Стенка глазного яблока образована оболочками: в передней части расположены конъюнктива и роговица , в задней - сетчатка , сосудистая оболочка и склера . Полость глазного яблока занимает стекловидное тело . Кпереди от стекловидного тела расположен двояковыпуклый хрусталик . Между роговицей и хрусталиком находятся содержащие водянистую влагу перeдняя камера (между задней поверхностью роговицы и радужкой со зрачком) и задняя камера глаза (между радужкой и хрусталиком).

Роговица - прозрачная оболочка передней стенки глаза. Лимб - граница между прозрачной роговицей и непрозрачной склерой.

Склера - наружная непрозрачная оболочка глазного яблока. В месте соединения склеры с роговицей расположены небольшие сообщающиеся полости, в совокупности образующие шлеммов канал , обеспечивающий отток жидкости из передней камеры глаза.

Сосудистая оболочка осуществляет питание сетчатки и содержит большое количество сосудов, обусловливающих розовую окраску при офтальмоскопии. Радужка - передний вырост сосудистой оболочки. Другая часть сосудистой оболочки - ресничное тело - участвует в аккомодации зрения, регулируя форму хрусталика.

Радужная оболочка расположена между роговицей и хрусталиком, разделяет переднюю и заднюю камеры глаза. Радужка имеет в центре отверстие - зрачок . В состав радужки входят гладкие мышцы: циркулярная суживающая (сфинктер зрачка) и радиальная расширяющая (дилататор зрачка). При раздражении парасимпатических (холинергических) нервных волокон зрачок суживается, симпатическая (адренергическая) стимуляция приводит к расширению зрачка.

Ресничное тело находится позади от радужки вокруг хрусталика и обеспечивает аккомодацию. Основную массу ресничного тела занимает ресничная мышца (парасимпатическая иннервация). От ресничного тела по направлению к хрусталику отходят ресничные отростки , к которым прикрепляется циннова связка . При сокращении циркулярных волокон ресничной мышцы циннова связка расслабляется и хрусталик принимает более сферическую форму (увеличение рефракции).

Водянистая влага . В передней и задней камерах глаза находится жидкость - водянистая влага. Её выделяет ресничное тело в заднюю камеру глаза, через зрачок водянистая влага попадает в переднюю камеру глаза, направляется в пространства радужно–роговичного угла и оттекает в венозный синус склеры. При нарушении оттока водянистой влаги происходит повышение внутриглазного давления (глаукома), что вызывает ишемию сетчатки и может привести к слепоте.

Стекловидное тело - прозрачная среда глаза, заполняет полость между хрусталиком и сетчатой оболочкой; стекловидное тело - гель, содержащий воду, коллаген, белок витреин и гиалуроновую кислоту. Через стекловидное тело от сетчатки к хрусталику проходит канал.

Хрусталик. Эпителиальные клетки хрусталика связаны щелевыми контактами, содержат кристаллины и с возрастом утрачивают ядра и органеллы: это прозрачные хрусталиковые волокна , составляющие основную часть хрусталика. Пpозpачность хpусталика и/или его капсулы нарушается при катаракте.

Сетчатая оболочка (сетчатка) - внутренняя оболочка глаза - имеет зрительный отдел, по зубчатому краю переходящий в слепой отдел, покрывающий сзади ресничное тело и радужку. У заднего края оптической оси глаза сетчатка имеет округлое жёлтое пятно (пятно сетчатки) диаметром около 2 мм. Центральная ямка - углубление в средней части жёлтого пятна - место наилучшего восприятия. Зрительный нерв выходит из сетчатки на 4 мм кнутри от жёлтого пятна. Здесь образуется диск зрительного нерва (слепое пятно ), где отсутствует зрительное восприятие. В центре диска имеется углубление, в котором видны питающие сетчатку сосуды.

3. Защитный аппарат глаза.

Длинные ресницы верхнего века предохраняют глаз от попадания пыли; мигательный рефлекс (моргание) осуществляется автоматически. Веки содержат мейбомиевы железы , благодаря которым края век всегда увлажнены. Конъюнктива - тонкая слизистая оболочка - выстилает как внутреннюю поверхность век, так и наружную поверхность глазного яблока. Слёзная железа выделяет слёзную жидкость, которая орошает конъюнктиву.

Слёзная жидкость выполняет три основные функции: поддерживает увлажнённой конъюнктиву, действует как мягкий антисептик и вымывает пыль и мелкие частицы, попадающие на конъюнктиву. Раздражители (пыль или микроорганизмы), а также эмоции вызывают увеличение секреции слёзной жидкости до такой степени, что дренажная система (слёзные протоки, слёзный мешок, носослёзный канал) переполняется и начинают течь слёзы.

Моргание - нормальный рефлекторный акт, происходящий несколько раз в минуту - способствует увлажнению конъюнктивы. Оно также возникает как защитный рефлекс при внезапном приближении какого-либо предмета близко к поверхности лица (морды).

4. Оптический аппарат глаза

Оптический аппарат глаза – это система линз, формирующая на сетчатке перевернутое и уменьшенное изображение внешнего мира.

К компонентам оптического аппарата глаза относят: роговицу, камеры с жидкостью, радужную оболочку и зрачок, хрусталик с сумкой, стекловидное тело, секрет слезных желез.

Глаз имеет систему линз с различной кривизной и различными показателями преломления световых лучей, включающую четыре преломляющих среды между: 1) воздухом и передней поверхностью роговицы; 2) задней поверхностью роговицы и водянистой влагой передней камеры; 3) водянистой влагой передней камеры и хрусталиком; 4) задней поверхностью хрусталика и стекловидным телом.

Регуляция оптического аппарата осуществляется посредством рефлекса хрусталика (аккомодации) и рефлекса зрачка.

Аккомодация - приспособление глаза к чёткому видению предметов, расположенных на различном расстоянии. Основная роль в процессе аккомодации принадлежит хрусталику, способному изменять свою кривизну. Хрусталик изменяет форму от умеренно выпуклой до значительно выпуклой. При взгляде на удалённые предметы ресничные мышцы расслабляются, поддерживающая связка растягивает и уплощает хрусталик, придавая ему дискообразную форму. При взгляде на близкие предметы для полной фокусировки необходима более значительная кривизна хрусталика, поэтому мышцы ресничного тела сокращаются, связки расслабляются, а хрусталик в силу своей эластичности становится более выпуклым.

Аккомодация контролируется парасимпатическими нервами, поступающими в глаз в составе глазодвигательного нерва. Стимуляция парасимпатического нерва вызывает сокращение ресничной мышцы, что расслабляет связочный аппарат хрусталика и приводит к увеличению его преломляющей силы. Следовательно, по мере того, как удалённый предмет приближается к глазу, возрастает парасимпатическая импульсация к ресничной мышце, и уровень её сокращения постоянно поддерживает в фокусе рассматриваемый предмет. Симпатическая стимуляция незначительно расслабляет ресничную мышцу, но этот эффект практически не оказывает влияния на нормальный аккомодационный механизм.

Способность к аккомодации зависит от функционального состояния животного (при утомлении острота зрения снижается), возраста. У старых животных хрусталик теряет свою эластичность, практически не изменяет свою кривизну и развивается дальнозоркость. При этом удаленные предметы видятся хорошо, а находящиеся вблизи – плохо. Обратное явление называется близорукостью. Близорукость и дальнозоркость часто встречается у лошадей, а близорукость – у овец.

Зрачковый рефлекс . Зрачок - круглое отверстие в радужной оболочке - очень быстро меняется в размере в зависимости от количества света, падающего на сетчатку. Просвет зрачка может изменяться от 1 мм до 8 мм. Это придаёт зрачку свойства диафрагмы. Сетчатка очень чувствительна к свету, слишком большое количество света искажает цвета и раздражает глаз. Изменяя просвет, зрачок регулирует количество света, попадающего в глаз. Яркий свет вызывает безусловнорефлекторную вегетативную реакцию, замыкающуюся в среднем мозге: сфинктер зрачка в радужной оболочке обоих глаз сокращается, а дилататор зрачка расслабляется, в результате диаметр зрачка уменьшается. Плохое освещение заставляет оба зрачка расшириться, чтобы достаточное количество света могло достичь сетчатки и возбудить фоторецепторы.

5. Вегетативная иннервация глаза .

Глаз иннервируется симпатическими и парасимпатическими нервными волокнами.

Парасимпатические преганглионарные волокна в составе глазодвигательного нерва проходят к ресничному ганглию и от него постганглионарные волокна в виде ресничных нервов поступают в глаз. Волокна этих нервов иннервируют сфинктер зрачка. Соответственно ацетилхолин и эзерин вызывают сужение зрачка, а блокада холинорецепторов сфинктера радужки атропином приводит к расширению зрачка.

Симпатическая иннервация глаза происходит из клеток бокового рога первых грудных сегментов спинного мозга. Отсюда симпатические волокна проходят в верхний симпатический ганглий, где они синаптически контактируют с постганглионарными нейронами. Постганглионарные симпатические волокна распространяются по поверхности сонной артерии и её ветвей и достигают глаза. Здесь симпатические волокна иннервируют дилататор зрачка, и возбуждение симпатических волокон расширяет зрачок. Адреналин и его аналоги также расширяют зрачок. Зрачки расширяются при гипоксии, болевом шоке, при эмоциях ярости и страха. Симпатические волокна иннервируют также некоторые наружные глазные мышцы.

6. Строение и функции сетчатки

Сетчатка прилегает к стекловидному телу и является внутренней оболочкой глазного яблока, содержащей фоторецепторы – палочки и колбочки, воспринимающие световые лучи, а так же нервные клетки с многочисленными отростками.

Сетчатка представлена несколькими слоями:

· Пигментный слой;

· Слой фоторецепторов;

· Слой горизонтальных клеток – содержит тормозные нейроны;

· Слой биполярных клеток – содержит нейроны проведения и конвергенции возбуждения;

· Слой амакриновых клеток – содержит тормозные нейроны;

· Слой ганглиозных клеток – в нем возникают потенциалы действия. Из отростков этих клеток формируется зрительный нерв;

Все слои пронизывают и связывают между собой глиальные (Мюллеровы) клетки.

Пигментный слой – состоит из пигментных клеток, содержащих пигмент фусцин. Он поглощает свет, препятствуя его рассеивание и способствуя четкости изображения, так же участвует в трофике рецепторов (депо витамина А), их антиоксидантной защите, фагоцитирует продукты распада фоторецепторов. Механически этот слой наиболее слабое место (отслойка сетчатки).

У ночных животных между пигментными клетками и фоторецепторами расположен слой, отражающий свет и состоящий из кристаллов и нитей. В результате на фоторецепторы действуют не только прямые лучи, но и отраженные, что дает возможность видеть в темноте.

От внутренней поверхности пигментного слоя в глубину примыкающего слоя фоторецепторов отходят отростки (борода), окружающие светочувствительные клетки. При сильном освещении зерна пигмента перемещаются из эпителиальных клеток и заслоняют палочки и колбочки от яркого света.

Слой фоторецепторов – осуществляет рецепцию светового раздражения. Представлен палочками (расположены в сетчатке, кроме желтого и слепого пятен) и колбочками (локализуются в наибольшей концентрации в области желтого пятна). Фоторецепторы состоят из двух члеников: наружного (содержит зрительный пигмент, чувствительный к действию света) и внутреннего (имеет ядро и митохондрии, обеспечивающие энергетические процессы в клетке), отделенных друг от друга мембраной. Светочувствительные членики фоторецепторов обращены в сторону, противоположную свету. Светочувствительный членик каждой палочки состоит из стопки тонких пластинок и дисков, собранных в виде цилиндра и включающий в свой состав фоторецепторный белок – фотопигмент. В колбочках мембрана образует дискообразные выпячивания, накладывающиеся друг на друга и уменьшающиеся в диаметре по направлению к верхнему концу. Внутренний сегмент фоторецепторной клетки оканчивается отростком, по которому возбуждение передается с фоторецептора на контактирующую с ним биполярную клетку.

Функции палочек:

· имеют высокую чувствительность к свету (в 500 раз выше чем у колбочек) и приспособлены для ночного зрения;

· обеспечивают периферическое зрение;

· воспринимают подвижные объекты.

Функции колбочек:

· осуществляют центральное зрение и обеспечивают остроту зрения;

· осуществляют цветовосприятие.

Свет, проникающий через стекловидное тело и внутренние слои сетчатки, не оказывает на них действия и воздействует только тогда, когда доходит до палочек и колбочек. В результате возникает нервный импульс, передающийся через цепь клеток, которые миновал луч света, и по зрительному нерву направляется в головной мозг. Наибольшее возбуждение от действия света наблюдают в тех случаях, когда направление луча совпадает с длинной осью палочки или колбочки.

Возбуждение от фоторецепторов передается на волокна зрительного нерва через два слоя нервных клеток - биполярных и ганглиозных, контактирующих при помощи синапсов. Передача импульса с клеток одного слоя на другой совершается посредством выделения ацетилхолина, а механизм передачи возбуждения с фоторецептора на биполярную клетку выяснен пока недостаточно.

Некоторые биполярные нейроны связаны со многими палочками, а ганглиозные клетки контактируют со многими биполярными клетками. В результате группа фоторецепторов, соединенных с одной ганглиозной клеткой, образует рецептивное поле для этой клетки. Кроме того, в сетчатке имеются еще горизонтальные (звездчатые) и амикриновые клетки с ветвящимися отростками, соединяющими по горизонтали биполярные и ганглиозные клетки. Одна ганглиозная клетка может быть связана с десятками тысяч фоторецепторов, причем рецептивное поле этой клетки составляет площадь диаметром 1 мм.

Иначе происходит передача импульса в мозг с колбочек. Каждая колбочка передает сигнал биполярной клетке, связанной только с ней одной. Следовательно, если импульсы от рядом находящихся палочек сливаются, то сигналы от двух рядом расположенных колбочек передаются отдельно.

При рассматривании задней стенки глазного яблока, так называемого глазного дна (что можно сделать при помощи вогнутого зеркала - офтальмоскопа), виден бледноокрашенный участок, от которого расходятся кровеносные сосуды. Этот участок называют слепым пятном, так как в нем нет светочувствительных клеток. Со всей сетчатки к слепому пятну сходятся нервные волокна, образующие зрительный нерв. У сельскохозяйственных животных зрительные нервы перекрещиваются на вентральной поверхности головного мозга, причем нерв от правого глаза идет к левому полушарию, а от левого - к правому. Однако некоторое количество волокон не перекрещивается.

Биполярные нейроны сетчатки и ганглиозные клетки, образующие своими аксонами зрительный нерв, выполняют функции проводникового аппарата. Волокна зрительного нерва идут без перерыва к ядрам наружного (латерального) коленчатого тела, а также к ядрам передних бугров четверохолмия, где расположены центры ориентировочной реакции на зрительные раздражители. В наружные коленчатые тела передаются импульсы, точно соответствующие реакциям фоторецепторов сетчатки. Отсюда по аксонам последнего нейрона зрительного пути импульсы идут в затылочную область коры больших полушарий - корковый центр зрительного анализатора.

По направлению к наружному краю глаза от слепого пятна на оптической оси сетчатки находится центральное поле, имеющее вид светлой полоски - место наилучшего ви дения. В середине полоски расположено углубление, называемое цен тральной ямкой, в которой светочувствительные клетки состоят почти исключительно из колбочек, По мере удаления от нее количество палочек возрастает, колбочек же становится все меньше.

7. Фотохимические реакции и элек трические явления в сетчатке.

Рецепторы сетчатки содержат светочувствительные вещества: палочки - родопсин, колбочки - йодопсин. Родопсин и йодопсин - высокомолекулярные соединения белковой природы. Родопсин на свету теряет свою красную окраску и становится желтым, а затем обесцвечивается. Распадаясь на свету, он образует каротиноид ретинен и специфический белок - опсин. В темноте осуществляется ресинтез родопсина. Для его восстановления необходим ретинол (витамин А), который содержится в пигментном слое.

Световая энергия превращает родопсин, содержащий ретинен в форме свернутой молекулы - в цис-форме, в люмиродопсин - неустойчивое соединение, в которое ретинен входит в транс-форме с выпрямленной боковой цепью, то есть происходит изомеризация. Благодаря этому связь ретинена с белком нарушается и люмиродопсин превращается в метародопсин, а затем в свободный ретинен и в опсин. После этого транс-форма ретинена (альдегида витамина А) под действием фермента редуктазы переходит в витамин А (ретинол). Вновь идет процесс изомеризации - превращение в цис-форму, и только после этого формируется цис-ретинен, который в темноте с белком опсином вновь образует родопсин, который участвует в циклическом процессе.

Структура йодопсина близка к родопсину. Но в йодопсине ретинен соединен с другим белком, который отличается от опсина палочек. Степень поглощения света родопсином и йодопсином различна. Родопсин максимально поглощает лучи в сине-зеленой части спектра. Эти лучи в темноте кажутся наиболее яркими. Йодопсин в наибольшей степени поглощает желтый свет. Если с яркого солнечного света войти в темное помещение, то сначала ничего не видно, но по мере восстановления родопсина чувствительность палочек к свету возрастает и глаза начинают различать окружающую обстановку. Этот процесс приспособления называют тем новой адаптацией. При недостатке ретинола восстановление родопсина задерживается, глаз теряет способность к темновой адаптации (куриная слепота).

Фотохимические реакции зрительных пигментов при действии света составляют начало возбуждения зрительных рецепторов. Процесс возбуждения рецепторов сетчатки и возникновение импульсов в зрительном нерве зависят от ионов, которые образуются при распаде зрительных пигментов. В зрительных рецепторах и в зрительном нерве возникают электрические потенциалы, которые можно зафиксировать в виде электроретинограммы.

8. Световая чувствительность и ост рота зрения

Фоторецепторы сетчатки могут реагировать на очень малую величину света с чрезвычайно экономным расходованием зрительных пигментов. Палочки более чувствительны (в 1000 раз), чем колбочки. При малой интенсивности освещения восприятие света происходит при помощи палочек. Они расположены в основном по периферии сетчатки, и поэтому в сумерки лучше видны предметы, расположенные по сторонам. При ярком освещении восстановление родопсина не поспевает за его распадом в палочках и восприятие света осуществляется колбочками.

Способность к ясному различию мелких предметов и их деталей свойственна больше колбочкам, чем палочкам. Максимальную способность различать отдельные предметы называют остротой зрения. Ее определяют по наименьшему расстоянию между двумя точками, которые глаз видит отдельно, а не слитно. Максимальной остротой зрения обладает желтое пятно, к периферии от него острота зрения значительно ниже.

9. Функциональные особенности клеток сетчатки

Зрительные образы .

Сетчатка вовлечена в формирование трёх зрительных образов. Первый образ формируется под действием света на уровне фоторецепторов, превращается во второй образ на уровне биполярных клеток, в ганглиозных нейронах формируется третий образ . В формировании второго образа принимают также участие горизонтальные клетки, а в образовании третьего задействованы амакринные клетки.

Латеральное торможение - способ усиления зрительного контраста. Латеральное торможение - важнейший элемент деятельности сенсорных систем, позволяющий в сетчатке усиливать явления контраста. В сетчатке латеральное торможение отмечается во всех нейронных слоях, но для горизонтальных клеток оно является их основной функцией. Горизонтальные клетки латерально синаптически связаны с синаптическими участками палочек и колбочек и с дендритами биполярных клеток. В окончаниях горизонтальных клеток выделяется медиатор, который всегда оказывает тормозное влияние. Таким образом, латеральные контакты горизонтальных клеток обеспечивают возникновение латерального торможения и передачу правильного зрительного паттерна в мозг.

Биполярные клетки реагируют на контрастность изображения. Некоторые биполяры сильнее реагируют на цветной, нежели на чёрно-белый контраст.

Ганглиозные клетки реагируют на множество свойств зрительного объекта (например, на контрастность изображения, на светлые и тёмные объекты, однородность освещения, цвет объекта, его ориентацию).

10. Цветовое зрение

Характеристики цвета . Цвет имеет три основных показателя: тон (оттенок), интенсивность и насыщение . Для каждого из цветов существует дополнительный (комплементарный) цвет, который, будучи должным образом перемешан с исходным цветом, дает ощущение белого цвета. Чёрный цвет является ощущением, создаваемым отсутствием света. Восприятие белого цвета, любого цвета спектра и даже дополнительных цветов спектра может быть достигнуто смешением в различных пропорциях красного (570 нм), зелёного (535 н़ 㰄 㠄   ㌄   㬄 㸄 ㄄ 䌄 го (445 нм) цветов. Поэтому красный, зелёный и голубой - первичные (основные) цвета . Восприятие цвета зависит в какой-то мере от цвета других объектов в поле зрения. Например, красный объект кажется красным, если поле освещается зелёным или голубым цветом, и этот же красный объект будет казаться бледно-розовым или белым, если поле будет освещаться красным цветом.

Цветовосприятие - функция колбочек. Существует три типа колбочек, каждый из которых содержит только один из трёх разных (красный, зелёный и синий) зрительных пигментов.

У животных, ведущих ночной образ жизни, в сетчатке преобладают палочки (летучая мышь, сова, крот, кошка, еж), а у дневных животных - колбочки (голуби, куры, ящерицы). На основании этих наблюдений был сделан вывод, что колбочки связаны с дневным зрением, а палочки в основном приспособлены для сумеречного зрения и не воспринимают цвета. Однако кошки прекрасно видят днем, а содержащиеся в неволе ежи легко приспосабливаются к дневному образу жизни; змеи, в сетчатке которых находятся главным образом колбочки, хорошо ориентируются в сумерках. Функции палочек и колбочек у разных животных мало изучены. Лошади и рогатый скот хорошо различают цвета, в отношении собак имеются противоречивые данные.

Цветовое зрение у животных изучено крайне недостаточно. Можно предположить, что животные обладают высокоразвитым цветовым зрением, иначе невозможно объяснить широко распространенное в природе явление мимикрии, или покровительственной окраски, - один из видов приспособления животных к окружающей среде. Она жизненно необходима для них. Хищнику трудно поймать добычу, если он резко выделяется на фоне окружающей местности; многие животные спасаются от опасности, затаиваясь в полной неподвижности, так как именно движение делает их заметными на фоне, с которым сливается цвет их шкуры (горные козлы и бараны, пятнистые олени, выводковые птицы и т.д.).

Передача цветовых сигналов

Каждая ганглиозная клетка может стимулироваться как отдельными, так и многими колбочками. Когда все три типа колбочек - красные, голубые и зеленые - стимулируют одну и ту же ганглиозную клетку, сигналы, передаваемые через ганглиозную клетку, будут одинаковыми для любого цвета спектра. Эти сигналы не играют роли в определении различных цветов. Все они будут сигналами белого цвета.

Если ганглиозная клетка возбуждается колбочками только одного цвета, то она будет тормозиться возбуждением колбочки другого типа. Это наблюдается для красных и зелёных колбочек. Красные вызывают возбуждение, а зеленые - торможение ганглиозных клеток и наоборот: когда зеленые - возбуждают, то красные - тормозят. Такой же реципрокный тип отношений наблюдается между колбочками голубого, с одной стороны, и комбинацией красных и зелёных колбочек, с другой стороны, вызывая реципрокные (возбуждение–торможение) отношения между голубым и жёлтым цветом.

Механизм антагонистических эффектов следующий: колбочка одного цвета возбуждает ганглиозную клетку через деполяризованную биполярную клетку, а колбочка другого цвета тормозит ту же ганглиозную клетку через гиперполяризованную биполярную клетку.



Описаны три вида фоторецепторов сетчатки глаза: палочки, колбочки и пигментосодержащие ганглиозные клетки.
Рецепторный отдел зрительного анализатора.

Раньше (в течение 200-летней истории исследования глаза) считалось, что рецепторный отдел зрительного анализатора (зрительной сенсорной системы) состоит из фоторецепторов двух типов, но теперь мы должны говорить о трёх типах фоторецепторов сетчатки:

1. Колбочки (их 6-7 млн): им нужна высокая освещенность, они имеют разную чувствительность к разному спектру (длине волны), обеспечивают цветовое зрение, содержат пигмент йодопсин.

2. Палочки (их 110-120 млн): они работают при слабой освещенности, имеют очень высокую чувствительность, но не различают цвета и дают не резкое изображение, содержат пигмент родопсин («зрительный пурпур»).

Эти два типа фоторецепторов расположены в рецепторном слое сетчатки глаза перпендикулярно к направлению светового луча (столбиками). Причём они, можно сказать, неприлично развёрнуты к свету тылом.
Но относительно недавно в сетчатке были обнаружены фоторецепторы третьего типа:

3. Меланопсинсодержащие ганглиозные клетки сетчатки (МГКС) , или же intrinsically photosensitive retinal ganglion cells (ipRGCs): их всего 2% среди ганглиозных клеток сетчатки, они реагируют на освещённость, но не дают зрительных образов, содержат пигмент меланопсин, который сильно отличается от родопсина палочек и йодопсина колбочек. Нервные пути от этих ганглиозных (ганглионарных) клеток ведут световое возбуждение от сетчатки к гипоталамусу тремя разными путями.

В палочках и колбочках содержатся светочувствительные пигменты. Оба пигмента имеют в своей основе видоизмененный витамин А. Если не хватает витамина А, то страдает зрительное восприятие, т.к. не хватает «заготовок» для производства зрительного пигмента.
Палочки имеют максимум поглощения света в области 500 нм.

Колбочки же, в отличие от палочек, бывают трех типов:

1. «Синие» (коротковолновые - S) - 430-470 нм. Их 2% от общего числа колбочек.
2. «Зелёные» (средневолновые - M) – 500-530 нм. Их 32%.
3. «Красные» (длинноволновые - L) – 620-760 нм. Их 64%.

В каждом виде фоторецепторов используется свой тип зрительного пигмента. Интересно, что в 2000-е годы была обнаружена огромная вариабельность в соотношении красных и зелёных колбочек у разных людей. Стандартное соотношение, приведённое выше, составляет 1:2, но оно может достигать и 1:40, если сравнивать между собой разных людей. И тем не менее мозг компенсирует эти различия, и люди с разным соотношением красных и зелёных колбочек могут одинаково называть цвет с одной длиной волны.

Фотохимические процессы в глазу идут экономно: даже на ярком свету распадается только малая часть пигмента. В палочках это всего 0,006%. В темноте пигменты восстанавливаются.

Родопсин – пигмент палочек.
Йодопсин – пигмент красных колбочек.

Йодопсин восстанавливается быстрее родопсина в 530 раз, поэтому при недостатке витамина А, в первую очередь страдает зрение палочек, или сумеречное зрение.
Слой фоторецепторов лежит на слое пигментных клеток, которые содержат пигмент фуксин. Он поглощает свет и обеспечивает чёткость зрительного восприятия.
Отличительная черта фоторецепторов – это не деполяризация, а гиперполяризация в ответ на раздражение.
Можно сказать, что действие света как бы «повреждает» фоторецептор, разрушает его белок, и он перестает нормально работать, впадает в заторможенное состояние.

Фотохимическая «хрупкость» фоторецепторных клеток сетчатки и клеток пигментного эпителия к отоповреждению связана со следующими факторами:

1) присутствием в них эффективно поглощающих свет фотосенсибилизаторов,
2) достаточно высоким парциальным давлением кислорода,
3) наличием легко окисляющихся субстратов, в первую очередь полиненасыщенных жирных кислот в составе фосфолипидов.

Именно поэтому в ходе эволюции органов зрения позвоночных и беспозвоночных сформировалась достаточно надежная система защиты от опасности фотоповреждения (Островский, Федорович, 1987). Эта система включает постоянное обновление светочувствительных наружных сегментов зрительных клеток, набор антиоксидантов и оптические среды глаза как светофильтры, где ключевую роль играет хрусталик.



Зрение - это один из способов познавать окружающий мир и ориентироваться в пространстве. Несмотря на то что другие органы чувств тоже очень важны, с помощью глаз человек воспринимает около 90% всей информации, поступающей из окружающей среды. Благодаря способности видеть то, что находится вокруг нас, мы можем судить о происходящих событиях, отличать предметы друг от друга, а также заметить угрожающие факторы. Глаза человека устроены так, что помимо самих объектов, они различают ещё и цвета, в которые окрашен наш мир. За это отвечают специальные микроскопические клетки - палочки и колбочки, которые присутствуют в сетчатке каждого из нас. Благодаря им воспринятая нами информация о виде окружающего передаётся в головной мозг.

Строение глаза: схема

Несмотря на то что глаз занимает так мало места, он содержит множество анатомических структур, благодаря которым мы имеем способность видеть. Орган зрения практически напрямую связан с головным мозгом, и с помощью специального исследования офтальмологи видят пересечение зрительного нерва. имеет форму шара и располагается в специальной выемке - орбите, которую образуют кости черепа. Чтобы понять, для чего нужны многочисленные структуры органа зрения, необходимо знать строение глаза. Схема показывает, что глаз состоит таких образований, как хрусталик, передняя и задняя камеры, зрительный нерв и оболочки. Снаружи орган зрения покрывает склера - защитный каркас глаза.

Оболочки глаза

Склера выполняет функцию защиты глазного яблока от повреждений. Она является наружной оболочкой и занимает около 5/6 поверхности органа зрения. Часть склеры, которая находится снаружи и выходит непосредственно к окружающей среде, называется роговицей. Ей присущи свойства, благодаря которым мы имеем способность чётко видеть окружающий мир. Основные из них - это прозрачность, зеркальность, влажность, гладкость и способность пропускать и преломлять лучи. Остальная часть наружной оболочки глаза - склера - состоит из плотной соединительнотканной основы. Под ней находится следующий слой - сосудистый. Средняя оболочка представлена тремя образованиями, расположенными последовательно: радужка, и хореоидея. Помимо этого, сосудистый слой включает зрачок. Он представляет собой небольшое отверстие, не покрытое радужной оболочкой. Каждое из этих образований имеет собственную функцию, которая необходима для обеспечения зрения. Последний слой - это сетчатая оболочка глаза. Она контактирует непосредственно с головным мозгом. Строение сетчатки глаза очень сложно. Это связано с тем, что она считается самой важной оболочкой органа зрения.

Строение сетчатки глаза

Внутренняя оболочка органа зрения является составляющей частью мозгового вещества. Она представлена слоями нейронов, которые устилают глаз изнутри. Благодаря сетчатой оболочке мы получаем изображение всего, что находится вокруг нас. На ней фокусируются все преломлённые лучи и составляются в чёткий предмет. сетчатки переходят в зрительный нерв, по волокнам которого информация достигает головного мозга. На внутренней оболочке глаза имеется небольшое пятно, которое находится в центре и обладает наибольшей способностью к видению. Эта часть называется макулой. В этом месте располагаются зрительные клетки - палочки и колбочки глаза. Они обеспечивают нам как дневное, так и ночное видение окружающего мира.

Функции палочек и колбочек

Эти клетки расположены на глаза и необходимы для того, чтобы видеть. Палочки и колбочки являются преобразователями чёрно-белого и цветного зрения. Оба вида клеток выступают в качестве светочувствительных рецепторов глаза. Колбочки названы так из-за своей конической формы, они являются связующим звеном между сетчатой оболочкой и центральной нервной системой. Основная их функция - это преобразование световых ощущений, получаемых из внешней среды, в электрические сигналы (импульсы), обрабатываемые головным мозгом. Специфичность к распознаванию дневного света принадлежит колбочкам благодаря содержащемуся в них пигменту - йодопсину. Это вещество имеет несколько видов клеток, которые воспринимают различные части спектра. Палочки являются более чувствительными к свету, поэтому их основная функция сложнее - обеспечение видимости в сумерках. Они тоже содержат пигментную основу - вещество родопсин, которое обесцвечивается при попадании солнечных лучей.

Строение палочек и колбочек

Своё название эти клетки получили благодаря своей форме - цилиндрической и конической. Палочки, в отличие от колбочек, располагаются больше по периферии сетчатки и практически отсутствуют в макуле. Это связано с их функцией - обеспечением ночного видения, а также периферических полей зрения. Оба типа клеток имеют схожее строение и состоят из 4 частей:


Количество светочувствительных рецепторов на сетчатке сильно различается. Палочковые клетки составляют около 130 миллионов. Колбочки сетчатки значительно уступают им в количестве, в среднем их насчитывается примерно 7 млн.

Особенности передачи световых импульсов

Палочки и колбочки способны воспринимать световой поток и передавать его в ЦНС. Оба типа клеток способны работать в дневное время. Отличием является то, что светочувствительность колбочек гораздо выше, чем палочек. Передача полученных сигналов осуществляется благодаря интернейронам, к каждому из которых присоединяется несколько рецепторов. Объединения сразу нескольких палочковых клеток делают чувствительность органа зрения значительно большей. Такое явление получило название «конвергенция». Она обеспечивает нам обзор сразу нескольких а также способность улавливать различные движения, происходящие вокруг нас.

Способность к восприятию цветов

Оба вида рецепторов сетчатки необходимы не только, чтобы различать дневное и сумеречное зрение, но и определять цветные картинки. Строение глаза человека позволяет многое: воспринимать большую площадь окружающей среды, видеть в любое время суток. Кроме того, мы имеем одну из интересных способностей - бинокулярное зрение, позволяющее значительно расширить обзор. Палочки и колбочки участвуют в восприятии практически всего цветового спектра, благодаря чему люди, в отличие от животных, различают все краски этого мира. Цветное зрение в большей степени обеспечивают колбочки, которые бывают 3-х видов (коротко-, средне и длинноволновые). Тем не менее палочки тоже имеют способность к восприятию небольшой части спектра.

Значение слова ФОТОРЕЦЕПТОРЫ в Большом российском энциклопедическом словаре

ФОТОРЕЦЕПТОРЫ

ФОТОРЕЦ́ЕПТОРЫ (от фото... и рецепторы), светочувствит. образования (молекулы пигментов, спец. клетки, органы), способные поглощать свет и индуцировать фотобиол. процессы в организме.

Большой российский энциклопедический словарь. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ФОТОРЕЦЕПТОРЫ в русском языке в словарях, энциклопедиях и справочниках:

  • ФОТОРЕЦЕПТОРЫ
    (от фото... и рецепторы) светочувствительные образования (молекулы пигментов, специальные клетки, органы), способные поглощать свет и индуцировать фотобиологические процессы в …
  • ФОТОРЕЦЕПТОРЫ
    (от фото... и рецепторы) , световоспринимающие. светочувствительные образования, способные в ответ на поглощение квантов света молекулами содержащихся в них …
  • ФОТОРЕЦЕПТОРЫ в Современном толковом словаре, БСЭ:
    (от фото … и рецепторы), светочувствительные образования (молекулы пигментов, специальные клетки, органы), способные поглощать свет и индуцировать фотобиологические процессы в …
  • ФОТОРЕЦЕПТОРЫ В ФИЗИОЛОГИИ ЧЕЛОВЕКА в Медицинских терминах:
    (фото- + рецепторы) см. Рецепторы зрительные …
  • РЕЦЕПТОРЫ в Энциклопедии Биология:
    , окончания чувствительных нервных волокон или специализированные клетки, преобразующие раздражения, воспринимаемые извне или из внутренней среды организма, в нервное возбуждение, …
  • ЗРЕНИЕ в Энциклопедии Биология:
    , способность организма воспринимать электромагнитное излучение из окружающей среды в т. н. видимом световом диапазоне от 300 до 800 нм. …
  • РЕЦЕПТОРЫ ЗРИТЕЛЬНЫЕ в Медицинских терминах:
    (син. фоторецепторы) Р. сетчатки, раздражение которых вызывает зрительное …
  • РЕЦЕПТИВНОЕ ПОЛЕ в Медицинских терминах:
    (франц. receptif воспринимающий, рецептивный; от лат. recipio, receptum брать, принимать) 1) зрительно-ганглиозного нейрона - участок сетчатки, в котором расположены фоторецепторы, …
  • ПАЛОЧКОВЫЕ КЛЕТКИ в Большом энциклопедическом словаре:
    (палочки) светочувствительные клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных, обеспечивающие сумеречное зрение; в отличие от колбочковых клеток обладают …
  • КОЛБОЧКОВЫЕ КЛЕТКИ в Большом энциклопедическом словаре:
    (колбочки) светочувствительные колбообразные клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных; воспринимают дневной свет и обеспечивают цветовое …
  • ЭКСТЕРОЦЕПТОРЫ в Большой советской энциклопедии, БСЭ:
    экстерорецепторы, обширная группа специализированных чувствительных образований, воспринимающих раздражения, действующие на организм из окружающей его внешней среды. Э. расположены на поверхности …
  • ЦВЕТОВОЙ КОНТРАСТ в Большой советской энциклопедии, БСЭ:
    контраст, 1) в цветовых измерениях (колориметрии) характеристика разницы между двумя цветностями х, у и х +D х, y + D …
  • ЦВЕТОВОЕ ЗРЕНИЕ в Большой советской энциклопедии, БСЭ:
    зрение, цветное зрение, цветовосприятие, способность глаза человека и многих видов животных с дневной активностью различать цвета, т. е. ощущать отличия …
  • ФОТОРЕЦЕПЦИЯ в Большой советской энциклопедии, БСЭ:
    (от фото... и рецепция) , восприятие света одноклеточными организмами или специализированными образованиями (фоторецепторами), содержащими светочувствительные пигменты. Ф. v одно …
  • СОСУДИСТАЯ ОБОЛОЧКА в Большой советской энциклопедии, БСЭ:
    оболочка, хориоидея, соединительнотканная оболочка глаза, расположенная между сетчаткой и склерой; через неё метаболиты и кислород поступают из крови …
  • СЕТЧАТКА в Большой советской энциклопедии, БСЭ:
    сетчатая оболочка, ретина, внутренняя оболочка глаза, преобразующая световое раздражение в нервное возбуждение и осуществляющая первичную обработку зрительного сигнала. Выстилает …
  • РОДОПСИН в Большой советской энциклопедии, БСЭ:
    (от греч. rhodon - роза и opsis - зрение), зрительный пурпур, основной зрительный пигмент палочек сетчатки позвоночных (кроме некоторых рыб …
  • РЕЦЕПТОРЫ в Большой советской энциклопедии, БСЭ:
    (лат. receptor - принимающий, от recipio - принимаю, получаю), специальные чувствительные образования, воспринимающие и преобразующие раздражения из внешней или внутренней …
  • ПАЛОЧКОВЫЕ КЛЕТКИ в Большой советской энциклопедии, БСЭ:
    клетки, фоторецепторы глаза человека и позвоночных животных, функционирующие как элементы сумеречного зрения. Расположены вместе с колбочковыми клетками в наружном слое …
  • НЕМАТОДЫ в Большой советской энциклопедии, БСЭ.
  • КОЛБОЧКОВЫЕ КЛЕТКИ в Большой советской энциклопедии, БСЭ:
    клетки, фоторецепторы глаза человека и позвоночных животных, функционирующие как элементы дневного светоощущения и обеспечивающие цветовое зрение; имеют колбообразную форму …
  • ЗРЕНИЕ в Большой советской энциклопедии, БСЭ:
    восприятие организмом внешнего мира, т. е. получение информации о нём, посредством улавливания специальными зрения органами отражаемого или излучаемого объектами света. …
  • ЖЁЛТОЕ ПЯТНО в Большой советской энциклопедии, БСЭ:
    пятно (macula lutea), место наибольшей остроты зрения в сетчатке глаза позвоночных животных и человека; имеет овальную форму, расположено против зрачка, …
  • ПАЛОЧКОВЫЕ
    П́АЛОЧКОВЫЕ КЛЕТКИ (палочки), светочувствит. клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных, обеспечивающие сумеречное зрение; в отличие от колбочковых …
  • КОЛБОЧКОВЫЕ в Большом российском энциклопедическом словаре:
    ЌОЛБОЧКОВЫЕ КЛЕТКИ (колбочки), светочувствит. колбообразные клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных; воспринимают дневной свет и обеспечивают цветовое …
  • РЕЦЕПТОРЫ в Новом словаре иностранных слов:
    (лат. recipere получать) концевые образования афферентных нервных волокон, воспринимающие раздражения из внешней (зкстероцепторы) или из внутренней (инте-роцепторы) среды организма …