Связь тригонометрии с реальной жизнью. Решение тригонометрических уравнений с помощью разложения на множители

Тригонометрия - это раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Тригонометрические функции используются для описания свойств различных углов, треугольников и периодических функций. Изучение тригонометрии поможет вам понять эти свойства. Занятия в школе и самостоятельная работа помогут вам усвоить основы тригонометрии и понять многие периодические процессы.

Шаги

Изучите основы тригонометрии

    Ознакомьтесь с понятием треугольника. В сущности, тригонометрия занимается изучением различных соотношений в треугольниках. Треугольник имеет три стороны и три угла. Сумма углов любого треугольника составляет 180 градусов. При изучении тригонометрии необходимо ознакомиться с треугольниками и связанными с ними понятиями, такими как:

    • гипотенуза ― самая длинная сторона прямоугольного треугольника;
    • тупой угол ― угол более 90 градусов;
    • острый угол ― угол менее 90 градусов.
  1. Научитесь строить единичную окружность. Единичная окружность дает возможность построить любой прямоугольный треугольник так, чтобы гипотенуза была равна единице. Это удобно при работе с тригонометрическими функциями, такими как синус и косинус. Освоив единичную окружность, вы легко сможете находить значения тригонометрических функций для определенных углов и решать задачи, в которых фигурируют треугольники с этими углами.

    • Пример 1. Синус угла величиной 30 градусов составляет 0,50. Это означает, что длина противолежащего данному углу катета равна половине длины гипотенузы.
    • Пример 2. С помощью данного соотношения можно вычислить длину гипотенузы треугольника, в котором есть угол величиной 30 градусов, а длина противолежащего этому углу катета равна 7 сантиметрам. В этом случае длина гипотенузы составит 14 сантиметров.
  2. Ознакомьтесь с тригонометрическими функциями. Существует шесть основных тригонометрических функций, которые необходимо знать при изучении тригонометрии. Эти функции представляют собой соотношения между различными сторонами прямоугольного треугольника и помогают понять свойства любого треугольника. Вот эти шесть функций:

    • синус (sin);
    • косинус (cos);
    • тангенс (tg);
    • секанс (sec);
    • косеканс (cosec);
    • котангенс (ctg).
  3. Запомните соотношения между функциями. При изучении тригонометрии крайне важно понимать, что все тригонометрические функции связаны между собой. Хотя синус, косинус, тангенс и другие функции используются по-разному, они находят широкое применение благодаря тому, что между ними существуют определенные соотношения. Эти соотношения легко понять с помощью единичной окружности. Научитесь пользоваться единичной окружностью, и с помощью описываемых ею соотношений вы сможете решать многие задачи.

    Применение тригонометрии

    1. Узнайте об основных областях науки, в которых используется тригонометрия. Тригонометрия полезна во многих разделах математики и других точных наук. С помощью тригонометрии можно найти величины углов и прямых отрезков. Кроме того, тригонометрическими функциями можно описать любой циклический процесс.

      • Например, колебания пружины можно описать синусоидальной функцией.
    2. Подумайте о периодических процессах. Иногда абстрактные понятия математики и других точных наук трудны для понимания. Тем не менее, они присутствуют в окружающем мире, и это может облегчить их понимание. Приглядитесь к периодическим явлениям вокруг вас и попробуйте связать их с тригонометрией.

      • Луна имеет предсказуемый цикл, продолжительность которого составляет около 29,5 дня.
    3. Представьте себе, как можно изучать естественные циклы. Когда вы поймете, что в природе протекает множество периодических процессов, подумайте о том, как можно изучать эти процессы. Мысленно представьте, как выглядит изображение таких процессов на графике. С помощью графика можно составить уравнение, которое описывает наблюдаемое явление. При этом вам пригодятся тригонометрические функции.

      • Представьте себе приливы и отливы на берегу моря. Во время прилива вода поднимается до определенного уровня, а затем наступает отлив, и уровень воды падает. После отлива вновь следует прилив, и уровень воды поднимается. Этот циклический процесс может продолжаться бесконечно. Его можно описать тригонометрической функцией, например косинусом.

    Изучайте материал заранее

    1. Прочтите соответствующий раздел. Некоторым людям тяжело усвоить идеи тригонометрии с первого раза. Если вы ознакомитесь с соответствующим материалом перед занятиями, то лучше усвоите его. Старайтесь чаще повторять изучаемый предмет - таким образом вы обнаружите больше взаимосвязей между различными понятиями и концепциями тригонометрии.

      • Кроме того, это позволит вам заранее выявить неясные моменты.
    2. Ведите конспект. Хотя беглый просмотр учебника лучше, чем ничего, при изучении тригонометрии необходимо неспешное вдумчивое чтение. При изучении какого-либо раздела ведите подробный конспект. Помните, что знание тригонометрии накапливается постепенно, и новый материал опирается на изученный ранее, поэтому записи уже пройденного помогут вам продвинуться дальше.

      • Помимо прочего, записывайте возникшие у вас вопросы, чтобы затем задать их учителю.
    3. Решайте приведенные в учебнике задачи. Даже если вам легко дается тригонометрия, необходимо решать задачи. Чтобы убедиться, что вы действительно поняли изученный материал, попробуйте перед занятиями решить несколько задач. Если при этом у вас возникнут проблемы, вы определите, что именно вам нужно выяснить во время занятий.

      • Во многих учебниках в конце приведены ответы к задачам. С их помощью можно проверить, правильно ли вы решили задачи.
    4. Берите на занятия все необходимое. Не забывайте свой конспект и решения задач. Эти подручные материалы помогут вам освежить в памяти уже пройденное и продвинуться дальше в изучении материала. Проясняйте также все вопросы, которые возникли у вас при предварительном чтении учебника.

      Тригонометрия в астрономии:

      Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

      Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах — секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты — широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. — ок. 120 до н. э.)


      Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
      Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

      Тригонометрия в физике:

      виды колебательных явлений.

      Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

      Где х — значение изменяющейся величины, t — время, А — амплитуда колебаний, ω — циклическая частота колебаний, — полная фаза колебаний, r — начальная фаза колебаний.

      Механические колебания . Механическими колебаниями

      Тригонометрия в природе.

      Мы часто задаем вопрос

    • Одно из фундаментальных свойств
    • - это более или менее регулярные изменения характера и интенсивности биологических процессов.
    • Основной земной ритм - суточный.

    Тригонометрия в биологии

    • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
    • диатоническая гамма 2:3:5

    Тригонометрия в архитектуре

    • Страховая корпорация Swiss Re в Лондоне
    1. Интерпретация

    Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили

    Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

    Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

    в которых она играет важную роль, будут расширяться.

    • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
    • Доказали
    • Думаем

    Просмотр содержимого документа
    «Данилова Т.В.-сценарий»

    МКОУ «Ненецкая общеобразовательная средняя школа – интернат им. А.П.Пырерки»

    Учебный проект

    " "

    Данилова Татьяна Владимировна

    Учитель математики

      Обоснование актуальности проекта.

    Тригонометрия - это раздел математики, изучающий тригонометрические функции. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.
    Слово тригонометрия впервые появляется в 1505 году в заглавии книги немецкого математика Питискуса.
    Тригонометрия – слово греческое, и в буквальном переводе означает измерение треугольников (trigonan – треугольник, metreo - измеряю).
    Возникновение тригонометрии было тесно связано с землемерием, астрономией и строительным делом.…

    Школьник в 14-15 лет не всегда знает, куда пойдет учиться и где будет работать.
    Для некоторых профессий ее знание необходимо, т.к. позволяет измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Принципы тригонометрии, используются и в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

      Определение предмета исследования

    3. Цели проекта.

      Проблемный вопрос
      1. Какие понятия тригонометрии чаще всего используются в реальной жизни?
      2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине?
      3. Как связаны архитектура, музыка и тригонометрия?

      Гипотеза

      Проверка гипотезы

    Тригонометрия (от греч. trigonon – треугольник, metro – метрия) –

    История тригонометрии:

    Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна. По звездам вычисляли местонахождение корабля в море.

    Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

    Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого «синуса дополнения», т.е. синуса угла, дополняющего данный угол до 90°. «Синус дополнения» или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co -sinus .

    В XVII – XIX вв. тригонометрия становится одной из глав математического анализа.

    Она находит большое применение в механике, физике и технике, особенно при изучении колебательных движений и других периодических процессов.

    Жан Фурье доказал, что всякое периодическое движение может быть представлено (с любой степенью точности) в виде суммы простых гармонических колебаний.

    в систему математического анализа.

    Где применяется тригонометрия

    Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.

    Тригонометрия в астрономии:

    Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

    Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

    Достижения Виета в тригонометрии
    Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
    Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

    Тригонометрия в физике:

    В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

    Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

    Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

    Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

    Механические колебания . Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.

    Тригонометрия в природе.

    Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».

    Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

    Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

    Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

      Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

      К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

      Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

      Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

      Биологические ритмы, биоритмы

      Основной земной ритм – суточный.

      Модель биоритмов можно построить с помощью тригонометрических функций.

    Тригонометрия в биологии

    Какие биологические процессы связаны с тригонометрией?

      Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

      Биологические ритмы, биоритмы связаны с тригонометрией

      Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза

    Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

    Возникновение музыкальной гармонии

      Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.

      Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

      диатоническая гамма 2:3:5

    Тригонометрия в архитектуре

      Детская школа Гауди в Барселоне

      Страховая корпорация Swiss Re в Лондоне

      Феликс Кандела Ресторан в Лос-Манантиалесе

      Интерпретация

    Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

    Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

    в которых она играет важную роль, будут расширяться.

      Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

      Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.

      Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

    7. Литература.

      Программа Maple6, реализующий изображение графиков

      «Википедия»

      Учеба.ru

      Math.ru «библиотека»

    Просмотр содержимого презентации
    «Данилова Т.В.»

    " Тригонометрия в окружающем нас мире и жизни человека "



    Цели исследования:

    Связь тригонометрии с реальной жизнью.


    Проблемный вопрос 1. Какие понятия тригонометрии чаще всего используются в реальной жизни? 2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине? 3. Как связаны архитектура, музыка и тригонометрия?


    Гипотеза

    Большинство физических явлений природы, физиологический процессов, закономерностей в музыке и искусстве можно описать с помощью тригонометрии и тригонометрических функций.


    Что такое тригонометрия???

    Тригонометрия (от греч. trigonon – треугольник, metro – метрия) – микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.



    История тригонометрии

    Истоки тригонометрии берут начало в древнем Египте, Вавилонии и долине Инда более 3000 лет назад.

    Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса.

    Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом и Птолемеем.

    Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна.

    По звездам вычисляли местонахождение корабля в море.


    Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

    В отличие от греков инд ийцы стали рассматривать и употреблять в вычислениях уже не целую хорду ММ соответствующего центрального угла, а только ее половину МР, т. е. синуса - половины центрального угла.

    Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого « синуса дополнения » , т.е. синуса угла, дополняющего данный угол до 90 . « Синус дополнения » или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus.

    Наряду с синусом индийцы ввели в тригонометрию косинус , точнее говоря, стали употреблять в своих вычислениях линию косинуса. Им были известны также соотношения cos =sin(90 - ) и sin 2 +cos 2 =r 2 , а также формулы для синуса суммы и разности двух углов.


    В XVII – XIX вв. тригонометрия становится

    одной из глав математического анализа.

    Она находит большое применение в механике,

    физике и технике, особенно при изучении

    колебательных движений и других

    периодических процессов.

    О свойствах периодичности тригонометрических функций знал еще Виет, первые математические исследования которого относились к тригонометрии.

    Доказал, что всякое периодическое

    движение может быть

    представлено (с любой степенью

    точности) в виде суммы простых

    гармонических колебаний.


    Основоположник аналитической

    теории

    тригонометрических функций .

    Леонард Эйлер

    Во «Введении в анализ бесконечных» (1748 г)

    трактует синус, косинус и т.д. не как

    тригонометрические линии, обязательно

    связанные с окружностью, а как

    тригонометрические функции, которые он

    рассматривал как отношения сторон

    прямоугольного треугольника, как числовые

    величины.

    Исключил из своих формул

    R – целый синус, принимая

    R = 1, и упростил таким

    образом записи и вычисления.

    Разрабатывает учение

    о тригонометрических функциях

    любого аргумента.


    В XIX веке продолжил

    развитие теории

    тригонометрических

    функций.

    Н.И.Лобачевский

    « Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций… Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».


    Стадии развития тригонометрии:

    • Тригонометрия была вызвана к жизни необходимостью производить измерения углов.
    • Первыми шагами тригонометрии было установление связей между величиной угла и отношением специально построенных отрезков прямых. Результат - возможность решать плоские треугольники.
    • Необходимость табулировать значения вводимых тригонометрических функций.
    • Тригонометрические функции превращались в самостоятельные объекты исследований.
    • В XVIII в. тригонометрические функции были включены

    в систему математического анализа.


    Где применяется тригонометрия

    Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.


    Тригонометрия в астрономии

    Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

    Значительных высот достигла тригонометрия и у индийских средневековых астрономов.

    Главным достижением индийских астрономов стала замена хорд

    синусами, что позволило вводить различные функции, связанные

    со сторонами и углами прямоугольного треугольника.

    Таким образом, в Индии было положено начало тригонометрии

    как учению о тригонометрических величинах.


    Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты - широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. - ок. 120 до н. э.)

    Гиппарх



    Тригонометрия в физике

    В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений, например:

    Механические колебания

    Гармонические колебания


    Гармонические колебания

    Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

    или

    Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

    Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.


    Механические колебания

    Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

    Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.


    Математический маятник

    На рисунке изображены колебания маятника, он движется по кривой, называемой косинусом.


    Траектория пули и проекции векторов на оси X и Y

    Из рисунка видно, что проекции векторов на оси Х и У соответственно равны

    υ x = υ o cos α

    υ y = υ o sin α


    Тригонометрия в природе

    Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».


    Оптические иллюзии

    естественные

    искусственные

    смешанные


    Теория радуги

    Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

    Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

    sin α / sin β = n 1 / n 2

    где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.


    Северное сияние

    Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

    Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.


    • Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.
    • К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.
    • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

    • Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.
    • Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.
    • Основной земной ритм – суточный.
    • Модель биоритмов можно построить с помощью тригонометрических функций.

    Тригонометрия в биологии

    Какие биологические процессы связаны с тригонометрией?

    • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
    • Биологические ритмы, биоритмы связаны с тригонометрией.

    • Модель биоритмов можно построить с помощью графиков тригонометрических функций.
    • Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

    Тригонометрия в биологии

    Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

    При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.



    Возникновение музыкальной гармонии

    • Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.
    • Частоты, соответствующие

    одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

    • диатоническая гамма 2:3:5

    У музыки есть своя геометрия

    Тетраэдр из различных типов аккордов четырех звуков:

    синий – малые интервалы;

    более теплые тона - более «разряженные» звуки аккорда; красная сфера- наиболее гармоничный аккорд с равными интервалами между нотами.


    cos 2 С + sin 2 С = 1

    АС – расстояние от верха статуи до глаз человека,

    АН – высота статуи,

    sin С - синус угла падения взгляда.


    Тригонометрия в архитектуре

    Детская школа Гауди в Барселоне


    Страховая корпорация Swiss Re в Лондоне

    y = f (λ)cos θ

    z = f (λ)sin θ


    Феликс Кандела Ресторан в Лос-Манантиалесе


    • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
    • Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.
    • Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

    Тригонометрия прошла длинный путь развития. И теперь, мы можем с уверенностью сказать, что тригонометрия не зависит от других наук, а другие науки зависят от тригонометрии.


    • Маслова Т.Н. «Справочник школьника по математике»
    • Программа Maple6, реализующий изображение графиков
    • «Википедия»
    • Учеба.ru
    • Math.ru «библиотека»
    • История математики с Древнейших времен до начала XIX столетия в 3-х томах// под ред. А. П. Юшкевича. Москва, 1970г. – том 1-3 Э. Т. Бэлл Творцы математики.
    • Предшественники современной математики// под ред. С. Н. Ниро. Москва,1983г. А. Н. Тихонов, Д. П. Костомаров.
    • Рассказы о прикладной математике//Москва, 1979г. А. В. Волошинов. Математика и искусство// Москва, 1992г. Газета Математика. Приложение к газете от 1.09.98г.

    Синус, косинус, тангенс - при произнесении этих слов в присутствии учеников старших классов можно быть уверенным, что две трети из них потеряют интерес к дальнейшему разговору. Причина кроется в том, что основы тригонометрии в школе преподаются в полном отрыве от реальности, а потому учащиеся не видят смысла в изучении формул и теорем.

    В действительности данная область знаний при ближайшем рассмотрении оказывается весьма интересной, а также прикладной - тригонометрия находит применение в астрономии, строительстве, физике, музыке и многих других областях.

    Ознакомимся с основными понятиями и назовем несколько причин изучить этот раздел математической науки.

    История

    Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

    Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

    Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

    Название

    Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.

    Например, в прошлом человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.

    Основные понятия

    Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

    Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.

    Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.

    Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.

    Популярные ошибки

    Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.

    Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

    Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.

    В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.

    Этимология слова «синус»

    История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

    Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите - дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

    Таблицы значений

    Существуют таблицы, в которые занесены числовые значения для синусов, косинусов и тангенсов всех возможных углов. Ниже представим данные для углов в 0, 30, 45, 60 и 90 градусов, которые необходимо выучить как обязательный раздел тригонометрии для «чайников», благо запомнить их довольно легко.

    Если случилось так, что числовое значение синуса или косинуса угла «вылетело из головы», есть способ вывести его самостоятельно.

    Геометрическое представление

    Начертим круг, через его центр проведем оси абсцисс и ординат. Ось абсцисс располагается горизонтально, ось ординат - вертикально. Обычно они подписываются как «X» и «Y» соответственно. Теперь из центра окружности проведем прямую таким образом, чтобы между ней и осью X получился нужный нам угол. Наконец, из той точки, где прямая пересекает окружность, опустим перпендикуляр на ось X. Длина получившегося отрезка будет равна численному значению синуса нашего угла.

    Данный способ весьма актуален, если вы забыли нужное значение, например, на экзамене, и учебника по тригонометрии под рукой нет. Точной цифры вы таким образом не получите, но разницу между ½ и 1,73/2 (синус и косинус угла в 30 градусов) вы точно увидите.

    Применение

    Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

    Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света - без базовой тригонометрии в формулах просто не обойтись.

    Ещё одна профессия, которая немыслима без тригонометрии - это геодезист. Используя теодолит и нивелир либо более сложный прибор - тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

    Повторяемость

    Тригонометрия имеет дело не только с углами и сторонами треугольника, хотя именно с этого она начинала своё существование. Во всех областях, где присутствует цикличность (биологии, медицине, физике, музыке и т. д.) вы встретитесь с графиком, название которого наверняка вам знакомо - это синусоида.

    Такой график представляет собой развёрнутую вдоль оси времени окружность и внешне похож на волну. Если вы когда-нибудь работали с осциллографом на занятиях по физике, вы понимаете, о чем идет речь. Как музыкальный эквалайзер, так и прибор, отображающий сердечные ритмы, используют формулы тригонометрии в своей работе.

    В заключение

    Задумываясь о том, как выучить тригонометрию, большинство учащихся средней и старшей школы начинают считать её сложной и непрактичной наукой, поскольку знакомятся лишь со скучной информацией из учебника.

    Что касается непрактичности - мы уже увидели, что в той или иной степени умение обращаться с синусами и тангенсами требуется практически в любой сфере деятельности. А что касается сложности… Подумайте: если люди пользовались этими знаниями больше двух тысяч лет назад, когда взрослый человек имел меньше знаний, чем сегодняшний старшеклассник, реально ли изучить данную область науки на базовом уровне лично вам? Несколько часов вдумчивых занятий с решением задач - и вы достигнете своей цели, изучив базовый курс, так называемую тригонометрию для «чайников».

    исследование, начало которого напоминает маленькую волну, после чего наблюдается систолический подъем. Маленькая волна, как правило, показывает сокращение предсердия. С началом подъема совпадает начало изгнания крови в аорту. На этой же ленте можно увидеть еще одну максимально высокую вершину, которая сигнализирует о закрытии полулунных клапанов. Форма данного отрезка максимального подъема может быть достаточно многообразной, что приводит к различным результатам данного исследования. После максимального подъема следует спуск кривой, который продолжается до самого конца. Данный отрезок верхушечной кардиограммы сопровождается открытием митрального клапана. После этого – незначительный подъем волны. Он указывает на время быстрого наполнения. Весь остальной отрезок кривой обозначается как время пассивного наполнения желудочка. Такое исследование правого желудочка способна указать на возможные патологические отклонения.

    Тригонометрия в медицине

    Руководитель: Козлова Людмила Васильевна

    Цель работы: Изучить использование тригонометрии в медицине. После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Данная работа рассказывает, в каких именно сферах медицины применяются знания по тригонометрии. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

    ВВЕДЕНИЕ

    Актуальность: Впервые с тригонометрией я столкнулась в восьмом классе, когда мы начали изучать азы этого раздела математики. Простейшие правила определения синуса и косинуса показались мне очень легкими, поэтому не вызвали особого интереса. Позднее, когда я начала учиться в десятом классе, то было ясно сразу, что тригонометрия- это огромный раздел математики, объединяющий большое количество знаний и теории. В дальнейшем я выяснила, что знания о тригонометрии очень универсальные для всех областей деятельности. Они имеют широкое применение в астрономии, географии, теории музыки, анализ финансовых рынков, электроники, теории вероятности, статистике, биологии, медицине, фармацевтики, химии, криптографии и многие другие.

    Тригономе́трия (от греч. τρίγωνον (треугольник) и греч. μέτρεο (меряю), то есть измерение треугольников) - раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии.

    Термин «тригонометрия» ввел в употребление в 1595 немецкий математик и богослов Варфоломей Питиск, автор учебника по тригонометрии и тригонометрических таблиц. К концу 16 в. большинство тригонометрических функций было уже известно, хотя само это понятия еще не существовало.

    Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звездам вычисляли местонахождение корабля в море или направление движения каравана в пустыне. Как известно, тригонометрия применяется не только в математике, но и в других сферах науки. Данная работа рассказывает, в каких именно сферах медицины применяются знания по геометрии.

    Одно из главных применений - кардиология. Аппараты ЭКГ снимают кардиограмму у людей, фиксируя удары сердца. После общения со специалистом по чтению графиков электрокардиограммы я выяснила, что график является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения.

    ОСНОВНОЕ СОДЕРЖАНИЕ

    ЦЕЛЬ: Изучить использование тригонометрии в медицине.

    ЗАДАЧИ:

      Изучить историю тригонометрии.

      Выяснить, в каких сферах медицины применяется тригонометрия.

      Выполнить практическую часть работы, выяснить принцип, на который опираются врачи-кардиологи, читая график электрокардиограммы.

    1.2.ИСТОРИЯ

    Первые тригонометрические таблицы видимо были составлены Гиппархом, который сейчас известен как «отец тригонометрии».

    Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды - это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Для компенсации отсутствия таблицы хорд математики, времен Аристарха, иногда использовали хорошо известную теорему, в современной записи -

    где 0° < β < α < 90°,

    Первые тригонометрические таблицы были, вероятно, составлены Гиппархом Никейским (180-125 лет до н. э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов. Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху.

    Позднее Клавдий Птолемей (90 - 168 г. н. э.) в «Альмагесте» расширил Гиппарховы «Хорды в окружности». Тринадцать книг «Альмагеста» - самая значимая тригонометрическая работа всей античности. Позже Птолемей вывел формулу половинного угла. Птолемей использовал эти результаты для создания своих тригонометрических таблиц, которые не сохранились до наших дней.

    Замена хорд синусами стала главным достижением средневековой Индии. С VIII века учёные стран Ближнего и Среднего Востока развили тригонометрию. После того как трактаты мусульманских ученых были переведены на латынь, многие идеи стали достоянием европейской и мировой науки.

    2. ТРИГОНОМЕТРИЯ В МЕДИЦИНЕ

    2.1.БИОРИТМЫ

    Биоритмы - периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации- от молекулярных до биосферы. Одни биологические ритмы относительно самостоятельны (частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам - суточным (колебания интенсивности деления клеток, обмена веществ) .

    Человек со дня рождения находится в трех , биоритмах : физическом, эмоциональном и интеллектуальном.

      Физический цикл равен 23 дням. Он определяет энергию человека, его силу, выносливость, координацию движения.

      Эмоциональный цикл (28 дня) обусловливает состояние нервной системы и настроение.

      Интеллектуальный цикл (33 дня) определяет творческую способность личности.

    Любой из циклов состоит из двух полупериодов, положительного и отрицательного.

      В течение первой половины физического цикла человек энергичен и достигает лучших результатов в своей деятельности; во второй половине цикла энергичность уступает лености.

      В первой половине эмоционального цикла человек весел, агрессивен, оптимистичен, переоценивает свои возможности, во второй половине - раздражителен, легко возбудим, недооценивает свои возможности, пессимистичен, все критически анализирует.


    Рис.1. Биоритмы

    Модель биоритмов строят с помощью графиков тригонометрических функций. В интернете находится огромное количество сайтов, которые занимаются расчетом биоритмов. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

    2.2. ФОРМУЛА СЕРДЦА

    В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрокардиографии.

    Формула, получившая название тегеранской, представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, постановку диагноза и начало лечения .

    На данный момент не известна точная информация касающегося вопроса, ведутся активные работы и исследования по данной теме.

    Российские ученые вывели математическую формулу сердца. Благодаря этим уравнениям можно высчитать, спрогнозировать и предотвратить любое сердечное заболевание. Единственная в России лаборатория математической физиологии действует при Екатеринбургском Институте иммунологии и физиологии.

    Проблема математических описаний физиологических функций организма – вторая по значимости проблема после проблемы ДНК человека. В будущем будут вычислены формулы других органов человека, и медики с помощью элементарных уравнений смогут прогнозировать и лечить любую болезнь.

    Человек - сложнейший механизм, в котором непрерывно происходят физические и химические процессы. Если все процессы, перевести на язык уравнений, то можно будет вывести единую формулу человека.

    Математики создали модель сердечной мышцы, которую биологи виртуально соединили с настоящей живой тканью. В компьютерной программе ученые задают сердцу различные нагрузки и наблюдают, как оно ведет себя. Изучив всевозможные алгоритмы, имитирующие деятельность сердца, ученые смогут делать реальные прогнозы.

    2. 3. ЭЛЕКТРОКАРДИОГРАММА

    Примененный в практических целях в 70-х годах 19 века англичанином А.Уоллером аппарат, записывающий электрическую активность сердца, продолжает служить человеку и по сей день. Электрокардиограф позволяет выявить явные отклонения от нормального ритма сердца, такие как Инфаркт миокарда, Ийшемическая болезнь сердца, синусовая брадикардия, тахекардия,аритмия, синдром слабости синусового узла и т.п. Как же отличить нормальные снимки ЭКГ от ярко выраженных заболеваний?.

    3.ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

    После того, как мне удалось пообщаться со специалистом расшифровки кардиограммы в нашей больнице, я узнала множество полезной информации для моей исследовательской работы.

    График электрокардиограммы является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения. Поэтому график ЭКГ всегда печатается на миллиметровой бумаге.

    При расшифровке результатов ЭКГ проводят измерение продолжительности интервалов между ее составляющими. Этот расчет необходим для оценки частоты ритма, где форма и величина зубцов в разных отведениях будет показателем характера ритма, происходящих электрических явления в сердце и электрической активности отдельных участков миокарда, то есть, электрокардиограмма показывает, как работает наше сердце в тот или иной период.

    Более строгая расшифровка ЭКГ производиться с помощью анализа и расчета площади зубцов при использовании специальных отведений, однако в практике, обходятся показателем направления электрической оси, которая представляет собой суммарный вектор.

    Существуют разные способы расшифровки ЭКГ. Некоторые специалисты основываются на формулы и рассчитывают все по ним; так частоту сердечных сокращений можно вычислить по формуле: где R - R длительность интервала, а некоторые пользуются готовыми данными, что тоже не запрещает отечественная медицина. На рисунке 2 представлены результаты расчетов ЧСС в зависимости от интервала.


    Рис.2

    Рис.2. Оценка ЧЧС

    Рис.3. Виды кардиограмм

    На рис.3 представлены три вида кардиограммы. Первая кардиограмма здорового человека, вторая, того же человека, только с синусовой тахикардией, после физической нагрузки, а третья кардиограмма больного человека с синусовой аритмией.

    ВЫВОД:

    После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

    БИБЛИОГРАФИЧЕСКИЙ СПИСОК

      Электрокардиография: Учебн. пособие. -5-е издание. – М.: МЕДпресс-информ, 2001. – 312с., ил.

      Интернет источники: Анатомия коронального клапана/Профессор, доктор мед. наук Ю.П. Островский