Транссудат причины. Разница между экссудатом и транссудатом

trans - через, и лат. sudor - пот) отёчная жидкость, скапливающаяся в полостях тела вследствие нарушения крово - и лимфообращения (например, брюшная водянка - асцит - при сердечной недостаточности или циррозе печени). Образование транссудата происходит без воспалительных изменений тканей, что отличает его от экссудата .

Транссудат , невоспалительный выпот - результат пропотевания сыворотки крови; скапливается в полостях и тканях тела при нарушениях кровообращения, водно-солевого обмена, повышении проницаемости стенок капилляров и венул. От воспалительного выпота (экссудата ) отличается главным образом низким содержанием белка (не более 2 %; плохо связывается белковыми коллоидами).

Отличие экссудата от транссудата

При дифференциальной диагностике выпотов важно отличать экссудат от транссудата. Транссудат образуется из-за нарушения гидростатического или коллоидно-осмотическое давления, а не воспаления. По своему составу наиболее близок к транссудату серозный экссудат.

Транссудат содержат небольшое количество белка, по сравнению с экссудатом. Разницу между транссудатом и экссудатом можно определить измерив удельный вес жидкости, который косвенно будет говорить о содержании в ней белка. Кроме того, при определении природы жидкости может оказаться полезной проба Ривальта .

Сравнительные характеристики экссудата и транссудата
Характеристика Транссудат Экссудат
Причина образования Повышенное гидростатическое давление,
пониженное коллоидно-осмотическое давление
Воспаление
Удельный вес менее 1015 более 1015
Белок менее 30 г/л более 30 г/л
Соотношение: белок выпота/белок сыворотки менее 0,5 более 0,5
Соотношение: ЛДГ выпота/ЛДГ сыворотки менее 0,6

В соответствии с существующей классификацией выпотные жидкости делят на экссудаты и транссудаты. Отдельно выделяют жидкость кистозных образований.

Транссудаты появляются вследствие разнообразных причин: изменения проницаемости сосудистых стенок; повышения внутрикапиллярного давления; расстройства местного и общего кро­вообращения (при сердечно-сосудистой недостаточности, цирро­зах печени; снижении онкотического давления в сосудах; нефротическом синдроме и др.). Обычно это прозрачная жидкость светло-желтого цвета слабощелочной реакции. Изменение цвета и прозрачности может наблюдаться в геморрагических и хилезных транссудатах. Относительная плотность жидкости колеблет­ся от 1,002 до 1,015, белок имеет концентрацию 5-25 г/л.

Экссудаты образуются в результате воспалительных процес­сов, вызываемых различными причинами. Это жидкость щелоч­ной реакции, относительная плотность которой выше 1,018, а кон­центрация белка более 30 г/л.

Экссудаты бывают серозные и серозно-фибринозные (при ревматических плевритах, плевритах и перитонитах туберкулез­ной этиологии), серозно-гнойные и гнойные (при бактериаль­ных плевритах и перитонитах), геморрагические (чаще всего при злокачественных новообразованиях, реже при инфаркте легкого, геморрагических диатезах, туберкулезе), хилезные (при затруд­нении лимфооттока через грудной проток вследствие сдавления опухолью, увеличенными лимфоузлами, а также разрыве лимфа­тических сосудов, обусловленном травмой или опухолью), холе­стериновые (застарелые, осумкованные выпоты, содержащие крис­таллы холестерина), гнилостные (при присоединении гнилостной флоры).

Выпотные жидкости получают путем пункции соответствую­щей полости. Полученный материал собирают в чистую сухую посуду. С целью предотвращения свертывания добавляют цитрат натрия из расчета 1 г на 1 л жидкости или раствор цитрата натрия (38 г/л) в соотношении 1: 9. ОПРЕДЕЛЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ

Цвет жидкости различен в зависимости от характера выпота. Транссудаты и серозные экссудаты светло-желтого цвета. Гной­ные экссудаты обычно желтовато-зеленые с бурым оттенком от наличия крови. Большая примесь крови придает жидкости крас­но-бурый оттенок (геморрагический экссудат). Молочно-белый цвет характерен для хилезных экссудатов. Холестериновый экс­судат желтовато-буроватый, иногда с коричневым оттенком.

Прозрачность жидкости также зависит от характера выпота. Транссудаты и серозные экссудаты прозрачны. Геморрагические, гнойные, хилезные - мутные.

Определение относительной, плотности проводят с помощью урометра, методами, описанными в разделе «Исследование мочи». Количественное определение белка осуществляют так же, как в моче с сульфосалициловой кислотой (30 г/л). Поскольку в выпотной жидкости всегда содержится белок в значительно боль­шем количестве, чем в моче, готовят основное разведение выпотной жидкости в 100 раз, для чего к 0,1 мл выпотной жидко­сти приливают 9,9 мл раствора хлорида натрия (9 г/л). При очень высоком содержании белка в экссудате разведение можно продолжать, пользуясь основным разведением. Расчет производят покалибровочному графику с учетом степени разведения жидкости.

Проба Ривальта предложена для дифференцирования транс­судатов и экссудатов. Экссудат содержит серомуцин (вещество глобулиновой природы), дающий положительную пробу Ривальта

Ход определения. В цилиндр емкостью 100 мл с дистиллиро­ванной водой, подкисленной 2-3 каплями концентрированной уксусной кислоты, добавляют 1-2 капли исследуемой жидкости. Если падающие капли образуют беловатое облачко (напоминает дым от сигареты), опускающееся до дна цилиндра, - проба по­ложительная. В транссудате помутнение по ходу капли не появ­ляется либо проявляется очень слабо и быстро исчезает. Проба Ривальта не всегда позволяет отличить транссудат от экссудата при смешанных жидкостях. Большое значение для их отличия имеет микроскопическое исследование.

Таблица 11

Отличительные признаки транссудатов и экссудатов

Свойства

Выпотнаяая жидкость

транссудат

экссудат

Лимонно-желтый

Лимонно-желтый, зеленова­то-желтый, бурый, желтый, буровато-красный, кровянис­тый, молочно-белый

Характер

Серозный

Серозный, серозно-гнойный, гнойный, гнилостный, гемор­рагический

Мутность

Прозрачный или слегка мут­новатый

Разная степень помутнения

Относительная плот­ность

< 1, 015

Свертываемость

Не свертывается

Свертывается

< 30 г/л

Проба Ривальта

Отрицательная

Положительная

Клеточный состав

В основном лимфоциты, ме- зотелиальные клетки

Различные лейкоциты, мак­рофаги, мезотелий, частью в состоянии пролиферации (разное количество), эритро­циты, кристаллы холестери­на, липофаги, капли жира, элементы злокачественных новообразований

Бактериальный состав

Обычно стерилен

Микобактерии туберкулеза, стрептококки, стафилококки

МИКРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ

Микроскопическое исследование выпотных жидкостей про­водят после центрифугирования в течение 5-10 мин при 1500- 3000 об/мин и приготовления препаратов из осадка. Микроско­пическое исследование следует производить в нативных и окра­шенных препаратах.

Нативные препараты. Каплю осадка наносят на предметное стекло и накрывают покровным стеклом, микроскопируют, ис­пользуя окуляр 7, объектив 40. Исследование нативных препара­тов дает возможность ориентировочно судить о характере пато­логического процесса, количестве клеточных элементов, преоб­ладании различных форменных элементов, наличии комплексов клеток опухолевой природы, кристаллов и других элементов.

Лейкоциты в небольшом количестве (до 10-15 в поле зре­ния) обнаруживаются в транссудатах и в большом количестве в жидкостях воспалительного происхождения.Эритроциты в том или ином количестве присутствуют в лю­бой жидкости. В транссудатах и серозных экссудатах их выявляют в небольшом количестве за счет травматической примеси крови (в момент прокола). Геморрагические экссудаты обычно содер­жат очень много эритроцитов.

Клетки мезотелия - крупные клетки размером до 25 мкм и более. Обнаруживаются в большом количестве в транссудатах, располагаются одиночно, иногда в виде скоплений. Иногда вы- являются выраженные дегенеративные изменения в виде вакуо­лизации цитоплазмы (перстневидные клетки).

Опухолевые клетки расположены обычно в виде комплексов без четких границ с выраженными признаками полиморфизма вели­чины и формы.Жировые капли в виде резко преломляющих свет круглых ка­пель, окрашивающихся Суданом III в оранжевый цвет, встреча­ются в гнойных экссудатах с выраженным клеточным распадом и в хилезных экссудатах.

Кристаллы холестерина - бесцветные прозрачные пластинки с обломанными углами в виде ступенек. Обнаруживаются в ста­рых осумкованных холестериновых экссудатах, чаще туберкулез­ной этиологии.

Окрашенные препараты. Небольшую каплю осадка помещают на предметное стекло. Препарат готовят так же, как мазок кро­ви, высушивают на воздухе. Окраску производят после фиксации мазков обычными гематологическими красителями. Клеточные элементы экссудатов окрашиваются быстрее, чем элементы кро­ви, поэтому время окраски сокращается до 8-10 мин. В мазках подсчитывают процентное соотношение отдельных видов лейко­цитов, исследуют морфологию других клеточных элементов.

В окрашенных препаратах обнаруживают следующие клеточ­ные элементы.

Нейтрофилы преобладающие клетки гнойного экссудата. По морфологии нейтрофилов можно судить о тяжести воспалитель­ного процесса. Дегенеративные изменения нейтрофилов (ток- согенная зернистость и вакуолизация цитоплазмы, гиперсегмен­тация и пикноз ядер, кариорексис и кариолизис вплоть до кле­точного распада) наблюдаются при наиболее тяжелых случаях гнойного воспаления. Нейтрофилы с явлением фагоцитоза встречаются при более доброкачественных процессах.

Лимфоциты являются преобладающими клетками серозного экссудата (до 80-90% всех лейкоцитов). В небольшом количест­ве встречаются и в транссудатах. Морфология их не отличается от таковой в периферической крови.

Плазматические клетки могут встречаться при затяжном ха­рактере воспаления серозных оболочек.

Гистиоциты – тканевые моноциты, клетки различных размеров с нежной структурой ядра моноцитоидной формы и серовато-голубой цитоплазмы. Часто обнаруживаются в гнойных экссудатах в период санации полости.

Макрофаги – полиморфные клетки с ядром неправильной формы, бобовидной формы с включениями в цитоплазме. Обнаруживаются при кровоизлияниях в плевральную полость, опухолях, гнойных плевритах.

Клетки мезотелия выстилают серозные оболочки. Крупных размеров до 30 мкм округлой формы, круглое ядро чаще центрально и широкой от серого до темно-голубого цитоплазмой. Иногда могут быть двух- и многоядерные. Обнаруживаются в экссудатах и транссудатах в начальной стадии воспалительного прецесса, а также при опухолях. В жидкостях большой давности отмечаются дегенеративные изменения этих клеток (вакуолизация цитоплазмы, эксцентрично расположенное ядро).

Клетки злокачественных опухолей – клетки крупного размера 40-50 мкм с выраженным полиморфизмом (различная величина, структура и окраска ядер, нарушение ядерно-цитоплазматического отношения в пользу ядра, гиперхромия ядер, крупные множественные ядрышки). Обнаруживаются при канцероматозе плевры, брюшина вследствие первичного (мезотелиома) или вторичного поражения (метастазирование из др. органов).

10.Современные представления о гемостазе. Сосудисто-тромбоцитарное и плазменное звено гемостаза. Биологическое действие и механизмы активации. Лабораторные методы исследования сосудисто-тромбоцитарного и коагуляционного гемостаза.

Система гемостаза представляет собой совокупность многих биологических факторов и биохимических процессов, поддерживающих структурную целостность кровеносных сосудов, жидкое состояние крови и ее текучесть.

Функции:

Обеспечивает циркуляцию жидкой крови в сосудистом русле;

Способствует прекращению кровотечения при повреждении сосуда.

Функционально-морфологические компоненты:

1) эндотелий сосудов,

2)клетки крови (лейкоциты,эритроциты,тромбоциты) ,

3)система свертывания крови, включающая в себя плазменные и тромбоцитарные факторы, антикоагулянтное звено и фибринолитическую систему крови.

Гемостаз включает 3 основных этапа:

    Первичный гемостаз, в котором участвуют, в основном, сосуды и тромбоциты, он заканчивается образованием тромбоцитарного сгустка,

    Вторичный гемостаз – в котором участвуют преимущественно плазменные факторы, он закачивается образованием окончательного фибринового тромба.

    Фибринолиз, приводящий к растворению тромба.

В зависимости от механизма остановки кровотечения различают первичный и вторичный гемостаз.

Первичный гемостаз (микроциркуляторный или сосудисто-тромбоцитарный) осуществляется в мелких сосудах диаметром до 200мкм. Формируется первичный (тромбоцитарный) тромб, обеспечивающий остановку кровотечений из микрососудов, в которых давление крови невелико. Здоровый, не поврежденный эндотелий обладает тромборезистентными свойствами и поэтому кровь свободно циркулирует по сосудам, форменные элементы крови не прилипают к сосудистой стенке. При повреждении сосудистой стенки эндотелий приобретает тромбогенные свойства. Рефлекторно развивается спазм сосуда в месте повреждения. Главными стимуляторами адгезии тромбоцитов являются коллаген, обнажившийся после травмы эндотелия сосуда и фактор Виллебранда, синтезируемый клетками эндотелия и попадающий в кровоток после их повреждения. Тромбоциты начинают приклеиваться к краям поврежденного сосуда, накладываются друг на друга, закрепляются, склеиваются (адгезия и агрегация). Из тромбоцитов высвобождаются АДФ, серотонин и адреналин, которые еще больше усиливают сосудистый спазм и агрегацию тромбоцитов. Из поврежденных тканей и эндотелия сосудов выделяется тканевой тромбопластин, который взаимодействует с белковыми факторами плазмы (7,4,10,5,2) и образует некоторое некоторое количество тромбина. В результате агрегация становится необратимой и формируется первичный или тромбоцитарный тромб. На этом кровотечение из мелких сосудов купируется.

Лабораторная оценка сосудисто-тромбоцитарного гемостаза.

При этом исследуют состояние капилляров и тромбоцитов: их количество и функцию (адгезию и агрегацию).

Длительность капиллярного кровотечения определяют после строго дозированного прокола кожи. По методу Дюке осуществляют прокол кожи ногтевой фаланги безымянного пальца, по Айви – 3 прокола (насечки) наносят на коже верхней трети предплечья при создании давления с помощью манжетки 40-50 мм рт. ст.

В норме длительность кровотечения по Дюке составляет 2-4 мин, по Айви – 1-7 мин.

Время капилярного кровотечения зависит от состояния капиляров, количества и функциональной активности тромбоцитов, способности их к адгезии и агрегации.

Практическое значение имеет удлинение времени кровотечения: при тяжелых формах неполноценности тромбоцитов и резко выраженных тромбоцитопениях, особенно значительно оно удлиняется при болезни Виллебрандта. Время кровотечения увеличивается также при заболеваниях печени, ДВС-синдроме, злокачественных опухолях, С -гиповитаминозе, гипофункции коры надпочечников, отравлении гепатотоксическими веществами и т.д.

При нарушениях свертываемости крови оно обычно остается нормальным, так как остановка кровотечения в зоне микроциркуляции обеспечивается, в основном, тромбоцитами, а не гемокоагуляцией. При некоторых коагуляционных нарушениях (тяжелых тромбо-геморрагических синдромах, значительной гипергепаринемиях) время кровотечения может удлинятся.

Укорочение – свидетельствует лишь о повышенной спастической способности капилляров

Резистентность капилляров исследуют с помощью различных проб – щипка, жгута и др.

Проба щипка – в норме после щипка складки кожи под ключицей ни сразу, ни через 24 часа не должно быть ни петехий, ни кровоподтека.

Проба жгута – у здоровых людей после сдавления плеча манжеткой тонометра (80 мм рт. ст.) в течение 5 мин петехии не образуются или их не более 10 диаметром до 1 мм (в кругу диаметром 2,5 см) – отрицательная проба.

Снижение резистентности, (положительные пробы) свидетельствует о неполноценности стенок микрососудов. Это может быть результатом инфекционно-токсического воздействия, С-гиповитаминоза, эндокринных нарушений (менструальный период, патологический климакс) и т.д. Наиболее часто положительная проба жгута отмечается у больных тромбоцитопениями и тромбоцитопатиями всех видов, при ДВС-синдроме, при активации фибринолиза, передозировке антикоагулянтов непрямого действия, при дефиците факторов протромбинового комплекса.

Количество тромбоцитов (PL, PLT)определяют с помощью фазово-контрастного микроскопирования или на автоматическом анализаторе (норма – 150-450 * 10 9 /л).

Уменьшение количества тромбоцитов может быть при геморрагическом диатезе, ДВС-синдроме, идиопатической нической пурпуре (болезнь Верльгофа), тромботической тромбоцитопенической пурпуре (болезнь Мошковица), иммунных тромбоцитопениях, остром лейкозе, болезнях накопления (Гоше, Нимана-Пика и т.д.), апластических, В12 - и фолиеводефицитных анемиях, заболеваниях печени, коллагенозе. Ряд антибактериальных, противосудорожных, мочегонных, противоревматических, противомалярийных препаратов, аналгетики, гипогликемические средства способны вызвать лекарственную тромбоцитопению.

Первичный тромбоцитоз может быть эссенциальным, а также встречается при миелопролиферативных заболеваниях, вторичный - при злокачественных новообразованиях, острой кровопотере, воспалительных процессах, железодефицитной анемии, после операций, после интенсивной физической нагрузки.

Адгезивность томбоцитов

Известны прямые и непрямые методы оценки адгезивности тромбоцитов. Прямые заключаются в подсчете тромбоцитов, фиксированных в колонке со стеклянными шариками при пропускании со стандартной скоростью определенного объема крови Непрямые основаны на установлении разницы между количеством тромбоцитов в венозной крови и крови, вытекающей из ранки на коже пальца (адгезивность in nivo). Снижение адгезивности наблюдается при ряде тромбоцитопатий и при болезни Виллебранда. Нормальные значения – 20-55 % .

Уменьшение адгезивности вплоть до 0 % наблюдается при ряде врожденных тромбоцитопатий (тромбастения Глацманна, аспириноподобный синдром, синдром Бернара-Сулье) и при болезни Виллебранда.

Агрегация тромбоцитов

Исследование способности тромбоцитов к агрегации используют для:

– диагностики наследственных аномалий тромбоцитов (сохраненной реакции освобождения – тромбастения Гланцмана; нарушенной реакцией освобождения – "аспириноподобный синдром"; болезни недостаточного пула накопления – синдром "серых тромбоцитов"; заболевания с преимущественным нарушением адгезии – болезнь Виллебранда, синдром Бернара-Сулье);

– диагностики приобретенных патологий тромбоцитов (цирроз печени, уремия, атеросклероз, ИБС, сахарный диабет, гиперлипидемии, парапротеинемии и т. д.);

– подбора дозы и оценки эффективности антиагрегантной терапии;

– оценки функциональной активности тромбоцитов при переливании тромбомассы.

Может быть спонтанная или индуцированная. Чаще используют последнюю. В качестве индукторов используют АДФ, адреналин, коллаген, бычий фибриноген, ристомицин.

Выбор агреганта зависит от цели исследования.

Для оценки тромбоопасных состояний чаще всего используют АДФ в малых дозах, для оценки антиагрегационной терапии – АДФ в более высоких дозах, иногда коллаген. При исследовании геморагических проявлений используют комплекс агрегантов: АДФ, адреналин (для оценки состояния мембранных рецепторов); ристомицин (для оценки необходимых кофакторов); АДФ, адреналин, коллаген (оценки способности тромбоцитов к реакции освобождения).

Принцип агрегации тромбоцитов основан на измерении скорости и степени уменьшения оптической плотности тромбоцитарной плазмы при перемешивании с индукторами агрегации. Это может быть оценено визуально, с помощью микроскопа а также с помощью агрегометра.

Вторичный гемостаз (макроциркуляторный, коагуляционный).

Осуществляется при кровотечении из сосудов среднего и крупного калибра. Обеспечивается свертывающей системой, которая состоит из двух звеньев - прокоагулянтного и антикоагулянтного.

Процесс плазменного свертывания крови представляет собой каскад ферментативных реакций, в котором каждый предшествующий фактор превращается в активный фермент, последовательно активирующий следующий профермент. Конечным продуктом процесса свертывания крови является фибрин-полимер - нерастворимый белок, образующий сеть, в котором задерживаются тромбоциты и другие форменные элементы крови, формируется окончательный фибрин - тромбоцитарный сгусток (гемостатический тромб). Весь процесс делят на 4 фазы:

Первая фаза -образование протромбиназы , происходит 2-мя путями - по внешнему и внутреннему механизму. Внутренний механизм запускается активацией 12-го фактора при контакте с поврежденной сосудистой стенкой. Так же принимают участие плазменные факторы 11,10,9,8,5,4, фактор Флетчера, фактор Виллебранда, протеины С и S, 3-ий тромбоцитарный фактор. Образование кровяной протромбиназы занимает основное время свертывания крови 4мин 55сек – 9мин 55сек. Внешний механизм запускается с появления в кровяном русле 3-го фактора (тканевой тромбопластин) из поврежденной сосудистой стенки (в норме в плазме он отсутствует), который при взаимодействии с 7,10,5,4 плазменными факторами образует тканевую протромбиназу. Протекает в 2-3 раза быстрее.

Вторая фаза - образование тромбина . Протромбиназа превращает протромбин в тромбин (2-2а). В этой реакции принимают участие 5,7,10 и 3-ий тромбоцитарный факторы. Продолжительность 2-5сек. Кровь продолжает сохранять жидкую консистенцию.

Третья фаза -образование фибрина , длится 2-5сек. Тромбин отщепляет от фибриногена пептиды, переводя его в фибрин-мономер. Последний полимеризуется и выпадает в виде переплетающихся нитей фибрина. Эта сеть увлекает за собой форменные элементы крови. Образуется рыхлый красный тромб. Он очень лабилен и может растворяться фибринолизином, мочевиной. Тромбин в присутствии 4-го фактора может активизировать фибриназу (13-ый фактор), которая, воздействуя на лабильный красный тромб, может уплотнять его и делать ограниченно растворимым.

Четвертая - посткоагуляционная фаза - ретракция и фибринолиз . Осуществляется системой фибринолиза, которая включает в себя плазминоген, его активаторы и ингибиторы. Плазминоген после активации превращается в плазмин. Плазмин расщепляет фибрин на отдельные фрагменты (продукты деградации фибрина), которые удаляются фагоцитарной системой. Активация плазминогена в норме происходит на фибриновом сгустке при фиксации на нем 12-го активированного фактора и прекалликреина. Активация плазминогена может индуцироваться тканевыми протеиназами, бактериальными. Выполнив свою функцию плазмин инактивируется системой ингибиторов.

Ультрафильтрат

плазмы

Трансудат

Экссудат

Плазма

Сосудистая проницаемость

Нормальная

Нормальная

Повышенная

Типы белков

Альбумины

Альбумины

Нет (фибриноген)

Относительная плотность

Воспаления

При остром воспалении наблюдается немедленное (но реверсивное) увеличение проницаемости венул и капилляров, благодаря активному сокращению филаментов актина в эндотелиальных клетках, приводящее к расширению межклеточных пор. К такому же результату может приводить прямое повреждение эндотелиальных клеток токсическими агентами. Через сосуды с нарушенной проницаемостью могут проникать большие количества жидкости и крупномолекулярные белки. Эти изменения проницаемости вызываются различными химическими медиаторами (табл. 1).

Экссудация жидкости: переход большого количества жидкости из кровотока в интерстициальную ткань вызывает припухлость (воспалительный отек) ткани. Увеличение перехода жидкости из микроциркуляторного русла в ткани из-за увеличения сосудистой проницаемости называется экссудацией . Состав экссудата приближается к составу плазмы (табл. 2); он содержит большое количество белков плазмы, включая иммуноглобулины, комплемент и фибриноген, ввиду того, что эндотелий с повышенной проницаемостью больше не предотвращает проникновение в ткани этих больших молекул. Фибриноген при остром воспалительном экссудате быстро преобразуется в фибрин под влиянием тромбопластинов тканей. Фибрин может обнаруживаться микроскопически в экссудате в виде розовых нитей или пучков. Макроскопически фибрин наиболее хорошо виден на воспаленной серозной оболочке, поверхность которой изменяется от нормальной блестящей до шероховатой, желтоватой, покрытой пленкой и коагулированными белками.

Экссудацию необходимо отличать от транссудации (табл. 2). Транссудация - это процесс увеличенного перехода жидкости в ткани через сосуды с нормальной проницаемостью. Сила, под влиянием которой происходит переход жидкости из кровотока в ткани, обусловлена увеличением гидростатического давления или уменьшением осмотического давления коллоидов плазмы. Транссудат имеет состав, аналогичный составу ультрафильтрата плазмы. В клинической практике идентификация отечной жидкости (транссудат или экссудат) имеет большую диагностическую ценность, так как она обеспечивает определение причин нарушений, например, при исследовании перитонеальной жидкости (при асците).

Экссудация обеспечивает снижение активности повреждающего агента путем:

Разведения его; - увеличения оттока лимфы; - наводнения плазмой, содержащей многочисленные защитные белки типа иммуноглобулинов и комплемента.

Увеличение лимфатического дренажа способствует переносу повреждающих агентов в регионарные лимфатические узлы, облегчая таким образом защитный иммунный ответ. Иногда при заражении вирулентными микроорганизмами этот механизм может стать причиной их распространения и возникновения лимфангита и лимфаденита.

Клеточные реакции:

Типы вовлеченных клеток: острое воспаление характеризуется активной эмиграцией воспалительных клеток из крови в область повреждения. Нейтрофилы (полиморфноядерные лейкоциты) доминируют в ранней стадии (в первые 24 часа). После первых 24-48 часов в очаге воспаления появляются фагоцитирующие клетки макрофагальной системы и иммунологически активные клетки типа лимфоцитов и плазматических клеток. Однако нейтрофилы остаются преобладающим типом клеток в течение нескольких дней.

Краевое стояние нейтрофилов: в нормальном кровеносном сосуде клеточные элементы сосредоточены в центральном осевом потоке, отделяясь от эндотелиальной поверхности зоной плазмы (рис. 3). Это разделение зависит от нормального тока крови, которое возникает под действием физических законов, влияние которых приводит к накоплению самых тяжелых клеточных частиц в центре сосуда. Так как скорость кровотока в расширенных сосудах при остром воспалении уменьшена, распределение клеточных элементов нарушается.

Эритроциты формируют большие агрегаты (“монетный столбик” из эритроцитов ) (так называемый “слажд”-феномен).

Лейкоциты перемещаются к периферии и вступают в контакт с эндотелием (маргинация, краевое стояние), на котором многие из них адгезируются . Это происходит в результате увеличения экспрессии (появления на поверхности клеток) различных молекул адгезии клеток (САМ , cell adhesion molecules) на лейкоцитах и эндотелиальных клетках. Например, экспрессия бета 2 интегринов (комплекс CD11-CD18), которые включают в себя лейкоцитарный функциональный антиген-1 (LFA-1, leukocyte function antigen-1), увеличивается из-за влияния таких хемотаксических факторов как C5a ("анафилатоксин”) комплемента, и лейкотриена В 4 ЛТB 4 . Синтез комплементарных CAM-молекул на эндотелиальных клетках аналогично регулируется действиями интерлейкина-1 (IL-1) и TNF (фактор некроза опухоли (tumor necrosis factor), который выявляется и вне опухолей); они включают ICAM 1, ICAM 2 и ELAM-1 (эндотелиальная молекула адгезии лейкоцитов, endothelial leukocyte adhesion molecule).

Эмиграция нейтрофилов: адзегированные нейтрофилы активно покидают кровеносные сосуды через межклеточные щели и проходят через базальную мембрану, попадая в интерстициальное пространство (эмиграция ). Проникновение через стенку сосуда длится 2-10 минут; в интерстициальной ткани нейтрофилы двигаются со скоростью до 20 мкм/мин.

Хемотаксические факторы (таблица 1): активная эмиграция нейтрофилов и направление движения зависят от хемотаксических факторов. Факторы комплемента C3a и C5a (образующие в комплексе анафилатоксин ) - мощные хемотаксические агенты для нейтрофилов и макрофагов, как и лейкотриен LTB4. Взаимодействие между рецепторами на поверхности нейтрофилов и этими "хемотаксинами" увеличивает подвижность нейтрофилов (путем увеличения притока ионов Ca 2+ в клетку, который стимулирует сокращение актина) и активирует дегрануляцию. Различные цитокины оказывают активирующую роль в процессах развития иммунного ответа.

Эритроциты попадают в воспаленную область пассивно, в отличие от активного процесса эмиграции лейкоцитов. Они выталкиваются из сосудов гидростатическим давлением через расширенные межклеточные щели вслед за эмигрирующими лейкоцитами (диапедез ). При тяжелых повреждениях, связанных с нарушением микроциркуляции, в очаг воспаления может попадать большое количество эритроцитов (геморрагическое воспаление).

Иммунный фагоцитоз (В) намного эффективнее неспецифического (А). Нейтрофилы имеют на своей поверхности рецепторы к Fc-фрагменту иммуноглобулинов и фактрорам комплемента. Макрофаги обладают такими же свойствами.

1. Распознавание - первым этапом фагоцитоза является распознавание повреждающего агента фагоцитарной клеткой, которое происходит или непосредственно (при распознавании больших, инертных частиц), или после того, как агент покрывается иммуноглобулинами или факторами комплемента (C3b) (опсонизация ). Облегченный опсонином фагоцитоз - механизм, участвующий в иммунном фагоцитозе микроорганизмов. IgG и C3b - эффективные опсонины. Иммуноглобулин, который обладает специфической реактивностью по отношению к повреждающему агенту (специфическое антитело) - наиболее эффективный опсонин. C3b образуется непосредственно в очаге воспаления путем активации системы комплемента. На ранних стадиях острого воспаления, прежде чем развивается иммунный ответ, доминирует неиммунный фагоцитоз, но по мере развития иммунного ответа он замещается более эффективным иммунным фагоцитозом.

2. Поглощение - после распознавания нейтрофилом или макрофагом чужеродная частица поглощается фагоцитарной клеткой, в которой формируется ограниченная мембраной вакуоль, названная фагосомой, которая при слиянии с лизосомами образует фаголизосому.

3. Разрушение микроорганизмов - когда повреждающим агентом является микроорганизм, он должен быть убит, прежде чем произойдет гибель фагоцитирующей клетки. В процессе разрушения микроорганизмов участвуют несколько механизмов.

ПРОЛИФЕРАЦИЯ

Пролиферация (размножение) клеток является завершающей фазой воспаления. В очаге воспаления наблюдается пролиферация камбиальных клеток соединительной ткани, В- и Т-лимфоцитов, моноцитов, а также клеток местной ткани, в которой разворачивается процесс воспаления - мезотелиальных, эпителиальных клеток. Параллельно наблюдается клеточная дифференцировка и трансформация. В-лимфоциты дают начало образованию плазматических клеток, моноциты - гистиоцитам и макрофагам. Макрофаги могут быть источником образования эпителиоидных и гигантских клеток (клетки инородных тел и клетки типа Пирогова-Лангханса).

Камбиальные клетки соединительной ткани в дальнейшем могут дифференцироваться в фибробласты, продуцирующие белок коллаген и гликозаминогликаны. Вследствие этого очень часто в исходе воспаления разрастается волокнистая соединительная ткань.

РЕГУЛЯЦИЯ ВОСПАЛЕНИЯ

Регуляция воспаления осуществляется с помощью гормональных, нервных и иммунных факторов.

Известно, что некоторые гормоны усиливают воспалительную реакцию - это, так называемые,

провоспалительные гормоны (минералокортикоиды, соматотропный гормон гипофиза, гипофизарный тиреостимулин, альдостерон). Другие, наоборот, уменьшают ее. Это противовоспалительные гормоны , такие как глюкокортикоиды и адренокортикотропный гормон (АКТГ) гипофиза. Их антивоспалительный эффект успешно используется в терапевтической практике. Эти гормоны блокируют сосудистый и клеточный феномен воспаления, ингибируют подвижность лейкоцитов, усиливают лимфоцитолиз.

Холинергические вещества , стимулируя выброс медиаторов воспаления, действуют подобно провоспалительным гормонам, а адренергические , угнетая медиаторную активность, ведут себя подобно противовоспалительным гормонам.

На выраженность воспалительной реакции, темпы ее развития и характер влияет состояние иммунитета. Особенно бурно воспаление протекает в условиях антигенной стимуляции (сенсибилизации). В таких случаях говорят об иммунном, или аллергическом, воспалении.

Транссудат – обычно бесцветная жидкость (невоспалительный выпот), накапливающаяся в полостях тела, тканях, подкожной жировой клетчатке вследствие отеков.

Выпот появляется при следующих заболеваниях:

  • цирроз печени;
  • водянка;
  • сердечная недостаточность.

Образуется транссудат вследствие пропотевания жидкой части сыворотки крови. Выпот может содержать примеси пигментов: крови, желчи. При разных болезнях невоспалительный выпот скапливается в разных частях тела.

Так, в плевральной полости, перикарде, брюшине он образуется при сердечной недостаточности и циррозах. При варикоцеле он скапливается в оболочке яичек. Иногда возможно инфицирование с последующим развитием плеврита и перитонита.

Навигация по статье

Причины

Причины скопления транссудата в теле следующие: нарушения лимфооттока, кровообращения (системного и местного), обменных процессов, истончение стенок капилляров.

Помимо цирроза печени, водянки и се рдечной недостаточности привести к данной патологии может нефротический синдром, эндокринные нарушения, такие, как фиброма яичника, микседема, хронический гломерулонефрит, амилоидно-липоидный нефроз, тромбоз вен, портальная гипертензия и другие патологии.

Состав транссудата

Для невоспалительной жидкости характерна бесцветность и прозрачность, реже мутноватый цвет или бледно-желтый оттенок жидкости.

Относительная плотность – 1,006-1,012, содержание белков – до 3%, проба Ривальта отрицательная, количество лейкоцитов в 1 мкл – меньше 1000, соотношение белка выпота и белка сыворотки – менее 0,5, соотношение ЛДГ выпота и ЛДГ сыворотки – менее 0,6.

Чем отличается транссудат от экссудата?

Отличие от экссудата заключается в том, что плотность транссудата меньше, он накапливается без воспалительных процессов в тканях и в нем гораздо меньше белка (до 2-3%), а также совсем нет ферментов, свойственных плазме.

Скопление транссудата чаще всего безболезненно, не связано с повышением температуры. Но иногда качественные различия между экссудатом и транссудатом исчезают.

Тогда важнейшим критерием диагностики является клиническая картина болезни, комплекс анатомических, бактериологических изменений, .