Виды зубчатых колес, их назначение и характеристики. Виды и принципы работы зубчатых передач Параметры шестерни

Шестернями называют основные элементы зубчатых передач (ЗП) в виде дисков или конусов с выполненными на их поверхности (нарезанными, литыми) зацепами (зубьями), которые входят в зацепление с зубьями другой детали. В машиностроении принято меньшую деталь передачи называть шестерней, а большую – зубчатым колесом (ЗК), но в целом можно считать эти термины синонимами.

Форма зубьев шестерен имеет определяющее значение на ее характеристики (нагрузочную способность, износоустойчивость, шумность и др).

Подавляющее большинство современных зубчатых шестерен выполнены с зубьями эвольвентного профиля (в форме эвольвенты окружности). При всех их несомненных достоинствах, зацепы эвольвентной формы имеют ограниченную прочность. Потому в тихоходных механизмах с большим силовым потоком применяются шестерни с зацепами и выемками круглой формы (так называемая передача Новикова).

В машиностроении основу составляют четыре вида шестерен (формфактора):

  • цилиндрические;
  • конические;
  • ЗК с внутренним зацеплением (эпициклы планетарных редукторов и др.);
  • вал-шестерня.

Особняком стоят такие разнообразные по форме зубчатые детали, как:

  • зубчатая рейка, применяемая в реечной передаче (кремальере);
  • секторное колесо, применяемое в приводах с неполным оборотом валов;
  • коронные шестерни с зацепами на боковой поверхности;
  • звездочки, применяемые в цепных механизмах.

Как цилиндрические, так и конические шестерни могут выполняться с зубьями (зацепами) эвольвентной и круглозубой формы.

Цилиндрические ЗК в конструкции машин и механизмов являются самыми распространенными.

В зависимости от начертания продольной линии зуба, они бывают:

  • прямозубые (продольная линия зуба параллельна оси вала);
  • косозубая (линия зуба под углом к оси вала);
  • шевронная (линии образуют по форме римскую букву V).

ЗК с внутренним зацеплением (эпициклы) имеют варианты продольной линии зуба такие же, как и у цилиндрических.

Конические шестерни в зависимости от формы линии зубьев бывают:

  • прямые;
  • тангенциальные;
  • круговые;
  • криволинейные.

Наиболее широко применяемым материалом для изготовления зубчатых деталей являются разнообразные сорта термически обрабатываемой (углеродистой и легированной) стали. Кроме того, в некоторых узлах и механизмах могут применяться шестерни, изготовленные из:

  • чугуна (серый СЧ, высокопрочный (магниевый) ВЧ);
  • латуни,
  • конструкционных полимеров и пластиков, (текстолит, капролон, фенилон и др.).

Подробнее о видах шестерен и их особенностях

Каждый особый тип ЗК имеет свои характерные особенности и сферу применения.

Цилиндрические прямозубые – наиболее просты и технологичны в изготовлении, хорошо ведут себя в составе скоростных редукторов, малочувствительны к изменениям межосевых расстояний и углов при сильных вибрациях. Но имеют недостатком относительно ограниченную нагрузочную стойкость. Также в составе узлов и механизмов имеют сравнительно высокую шумность в работе, порождают высокочастотные вибрации.

Цилиндрические косозубые – имеют большую площадь контакта (нагрузочную стойкость), лучшую плавность работы, меньшую шумность и вибрации. Применяются в скоростных нагруженных редукторах, где требуется снижение шумности. Но в своей работе порождают продольные усилия на валу, которые требуют применения более дорогих упорных подшипников.

Цилиндрические шевронные (самоцентрирующиеся) – не имеют недостатков прямозубых и косозубых (высокий передаваемый крутящий момент, плавность в работе, низкая шумность, отсутствие продольных усилий), но менее технологичны и более сложны в изготовлении, чувствительны к изменениям межосевых расстояний и углов при вибрациях.

Эпициклы (с внутренним зацеплением) – применяются в планетарных редукторах, или в составе цилиндрических передач, где по инженерным требованиям требуется экономия места.

Вал-шестерня является вариантом цилиндрического ЗК, в котором (как правило, прямые) зубья нарезаны непосредственно на штанге. Применяется в конструкциях редукторов, где требуется экономия места, или малонагруженные зубчатые детали подвергаются малому износу.

Зубчатая рейка – прямолинейная рейка с нарезанными на ней с одной или двух сторон зацепами, как правило, эвольвентного или циклоидного профиля. Работает в паре с приводной шестерней. Применяется в разнообразных механизмах, где необходимо преобразовать вращательное движение привода в продольно-поступательное движение рейки.

Секторное колесо – это не цельная цилиндрическая шестерня, а только ее часть (сектор), насаженный на ось. Применяется в приводах, где не нужен полный поворот вала, а вполне достаточно частичного.

Конические – применяются в зубчатых передачах, в которых оси валов пересекаются под произвольным углом (как правило, 90 град, но может быть и другой), или имеют динамически переменный угол зацепления. Предназначены для трансляции силового потока с изменением его направления. Среди них самые скоростные, технологичные в изготовлении, но в то же время и самые шумные – прямозубые конические шестерни. Как и в случае с цилиндрическими ЗК, изменение (усложнение) формы линии зубьев (от прямой к тангенциальной, круговой, криволинейной) приводит к увеличению плавности работы, нагрузочной способности, снижению шумности в механизмах. Но в то же время повышает их чувствительность к вибрациям, нарушениям зазоров в зацеплении, сложность и затратность изготовления.

Круглозубые (передача Новикова) – имеют высокую прочность зацепов и соответственно, нагрузочную стойкость. Но в то же время очень чувствительны к изменениям межосевых расстояний, углов, что случается при работе на высоких скоростях, в условиях вибраций. Потому применяются, как правило, только в тихоходных высоконагруженных машинах и механизмах. Имеют характерную особенность – в зубчатой паре профили зацепов на обоих колесах разные – на одном круглые выемки, на другом – круглые зубья.

Пара коронной (с зацепами на боковой поверхности цилиндрического колеса) и прямозубой ведущей шестерни (барабана) – применяется в механизмах с фиксированным неизменным углом трансляции силового потока в 90 град.

Звездочки – особый класс зубчатых деталей с разнообразной формой и профилем зубьев, применяются в цепных передачах с роликовыми, втулочными, силовыми, круглозвенными и др. цепями.

Ременная зубчатая передача одновременно совмещает особенности цепной и реечной. В ее составе имеются как гибкий зубчатый ремень, так и цилиндрические прямозубые шестерни (часто применяются как шестерня распредвала двигателя).

Лекция № 16

Изложенного материала

Вопросы для самопроверки

1. Перечислите примеры деталей с поверхностями сложной кофигурации.

2. Какие виды поверхностей используются при проектировании деталей с поверхностями сложной конфигурации?

3. Приведите способы обработки поверхностей сложной конфигурации.

4. Что такое обработка по копиру ?

5. Какие виды копиров используются в производстве?

1. Изучите номенклатуру деталей сложной конфигурации, производимую (ремонтируемую) на выбранном Вами предприятии.

2. Составьте технологический маршрут их обработки.

3. Определите инструменты и способы обработки конкретных поверхностей сложной конфигурации.

ОБРАБОТКА ЗУБЧАТЫХ ПОВЕРХНОСТЕЙ

В передачах современных машин широко используются зубчатые колёса, разнообраз-ные по форме, размерам и профилям (рис. 16.1). Наиболее распространены цилиндрические зубчатые колёса с прямыми (рис. 16.1а) и косыми (рис. 16.1б) зубьями. Соединение двух косых зубьев с противоположными углами наклона на ободе цилиндрического колеса представляет собой зубчатую передачу с шевронными (ёлочными) зубьями.

Рис. 16.1. Типы зубчатых передач

На рис. 16.1в представлена коническая передача с пересекающимися осями, причём угол встречи осей может быть любым. Конические колёса могут иметь прямые, косые и криволинейные зубья.

На рис. 16.1г представлена зубчатая передача со скрещивающимися осями, состоящая из двух зубчатых колёс с винтовыми зубьями . На рис. 16.1д пре-дставлена ещё одна схема передачи со скрещивающимися осями – червячная передача , отличающаяся от перечисленных выше тем, что один элемент передачи представляет собой винт (червяк), а другой - зубчатое колесо с фасонным зубом, сцепляющимся с витками винта.

На рис. 16.1е изображена реечная передача, одним элементом которой является зубчатое колесо с прямым или косым зубом, а другим – зубчатая рейка, которую можно представить как зубчатое колесо с бесконечно большим чи-слом зубьев. Реечная пара передаёт движение как от зубчатого колеса к рейке,

так и наоборот.

На рис. 16.1ж представлена схема волновой передачи , основанной на передаче движения за счёт бегущей волновой деформации одного из зубчатых ко-лёс. Эта передача состоит из водила 3 с двумя роликами, свободно вращающимися на осях, закреплённых в водиле, неподвижного жесткого зубчатого колеса 1 с внутренними зубьями и вращающего гибкого колеса 2 с наружными зубьями. Жёсткое зубчатое колесо соединяется с корпусом передачи. Гибкое зубчатое колесо изготавливают либо в виде стакана с тонкой легко деформирующейся стенкой, либо в виде свободно деформирующегося кольца.



В современных механизмах применяют зубчатые колёса с профилем зуба, очерченным эвольвентной кривой. В ряде случаев используются передачи с зацеплением Новикова, основным отличием которых является выпуклый и вогнутый круговые профили зубьев.

Действующими ГОСТами установлено 12 степеней точности цилиндрических зубчатых колёс и передач, с обозначением степеней в порядке убывания точности. За основу принята 7-я степень точности, соответствующая 7-му квалитету. Для каждой степени точности установлены нормы: кинематическая точность колеса; плавность работы колеса; контакта зубьев; бокового зазора.

Показатели кинематической точности представлены на рис. 16.2.

Нормы кинематической точности определяют значение наибольшей погрешности угла поворота зубчатого колеса за оборот при зацеплении с точным колесом. Эта погрешность возникает при нарезании зубчатых колёс вследствие погрешностей взаимного расположения заготовки обрабатываемого колеса и режущего инструмента, а также вследствие кинематической погрешности зуборезного станка. Показателем кинематической точности является предельная кинематическая погрешность (рис. 16.2а).

Кинематическую погрешность можно оценить предельной накопленной погрешностью окружного шага , являющейся наибольшей погрешностью во взаимном расположении двух любых одноименных профилей зубьев по одной окружности колеса (рис. 16.2б).

Показателем кинематической погрешности, обозначаемым называемым колебанием длины общей нормали , т.е. размер между наибоьшей и наименьшей длинами общей нормали в одном и том же колеса (рис. 16.2в).

Норма плавности работы зубчатого колеса определяет составляющую полной погрешности углов поворота зубчатого колеса, многократно повторяющуюся за оборот колеса (рис. 16.2г). Показателем плавности работы колёс является циклическая погрешность , которая представляет собой среднее значение размаха колебаний кинематической погрешности зубчатого колеса по всем циклам за оборот колеса. Плавность работы зубчатого зацепления влияет на бесшумность и долговечность передач (рис. 16.2д).

Погрешность профиля характеризует расстояние расстояние по нормали между двумя теоретическими профилями зуба колеса, ограничивающими действительный профиль в пределах его рабочего участка (рис. 16.2е).

Рис. 16.2. Показатели кинематической точности зубчатой передачи

Нормы контакта зубьев определяют точность выполнения сопряжённых зубьев в передаче. Пятном контакт называется часть боковой поверхности зуба колеса, на которой располагаются следы прилегания его к зубьям парного колеса после вращения передачи при лёгком торможении (рис.16.2ж). Норма точности определяется относительными размерами пятна контакта (в процентах):

1) по длине зуба – отношением расстояния между крайними точками следов прилегания за вычетом разрывов с, превосходящих размер модуля, к полной длине В зуба (см. рис. 16.2ж):

2) по высоте зуба – отношение средней высоты пятна прилегания по всей длине зуба к рабочей высоте зуба:

Пример норм размеров пятна контакта приведен в табл. 16.1.

Боковым зазором называется зазор между зубьями сопряжённых колёс в передаче, обеспечивающий свободный поворот одного из колёс при неподвиж-ном втором колесе. Боковой зазор определяется в сечении, перпендикулярном направлению зубьев, в плоскости, касательной к основным цилиндрам.

Гарантированный боковой зазор обозначается .

Для зубчатых колёс в передаче установлены шесть видов сопряжений: А, В, С, D, E, H и восемь видов допуска на боковой зазор, обозначенных в порядке

Таблица 16.1

Нормы размера пятна контакта (%%) для цилиндрических колёс

его возрастания буквами: h, d, c, b, a, z, y, x.

Для конических колёс и червячных пар установлены особые нормы точности.

16.2. Основные методы обработки зубьев цилиндрических и конических колёс.

Выбор метода обработки зубчатых колёс находится в непосредственной зависимости от установленной нормы точности различных их элементов, а так-же от основных требований к передачам в процессе их эксплуатации. С этой точки зрения зубчатые передачи можно разделить на следующие группы: 1) силовые передачи больших мощностей и высоких скоростей; основное требование – обеспечение высоких КПД; 2) силовые промышленные и транспортные передачи при средних скоростях; основное требование – надёжность и плавнос-ть хода; 3) силовые передачи в станкостроении; основное требование – постоя-нство передаточного отношения и плавность хода; 4) передачи в автомобилестрении; основное требование – плавность и лёгкость хода; бесшумность; 5) кинематические передачи в точных приборах; основное требование – постоянство передаточных отношений, отсутствие мертвого хода. Установленные ГОСТом степени точности учитывают эти условия, допуская высокие технические показатели в одном направлении и низкие в другом.

Зубчатые колёса обрабатывают на разнообразных зубообрабатывающих станках. Зубья на колёсах нарезают двумя способами: копированием (рис.16.3а, б) и обкаткой (огибанием; рис. 16.3в). При копировании инструменту придают форму впадины между зубьями, а затем проводят обработку. При этом профиль инструмента копируется на обрабатываемой поверхности.

Зубонарезание способом способом копирования можно выполнять: последовательным нарезанием каждого зуба колеса модульной дисковой или па-льцевой фрезой на универсальном фрезерном станке; одновременным долблением всех зубьев колес; одновременным протягиванием всех зубьев колес; круговым протягиванием. Способ копирования применяется главным образом для изготовления зубчатых колёс невысокой точности.

Современным, точным и производительным способом изготовления зуб-чатых колёс является нарезание зубьев обкаткой червячной фрезой, круглым

Рис. 16.3. Схемы нарезания зубьев

долбяком, реечным долбяком (гребенкой), зубострогальными резцами, резцовой головкой, накатыванием зубчатыми валками.

Способ обкатки заключается в том, что зубья на заготовке формируются при согласованном совместном вращении (обкатке) режущего инструмента и заготовки. Так при зубофрезеровании (рис. 16.4) прямолинейные боковые режущие кромки зубьев фрезы, имеющую в осевом сечении трапецеидальную форму, поочередно касаются нарезаемого зуба. Рассматривая последовательные положения зубьев фрезы, видим, что профиль впадины формируется постепенно и состоит из множества прямолинейных участков, образованных зубьями фрезы. Эти прямолинейные участки накладываются один на другой и практически образуют не ломаный, а криволинейный (эвольвентный).

Рис. 16.4. Обкатка зубьев колёс

Механическая передача – механизм, превращающий кинематические и энергетические параметры двигателя в необходимые параметры движения рабочих органов машин и предназначенный для согласования режима работы двигателя с режимом работы исполнительных органов.

Типы механических передач :

  • зубчатые (цилиндрические, конические);
  • винтовые (винтовые, червячные, гипоидные);
  • с гибкими элементами (ременные, цепные);
  • фрикционные (за счёт трения, применяются при плохих условиях работы).

В зависимости от соотношения параметров входного и выходного валов передачи разделяют на:

  • редукторы (понижающие передачи) – от входного вала к выходному уменьшают частоту вращения и увеличивают крутящий момент;
  • мультипликаторы (повышающие передачи) – от входного вала к выходному увеличивают частоту вращения и уменьшают крутящий момент.

Зубчатая передача – это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. При этом усилие от одного элемента к другому передаётся с помощью зубьев.

Зубчатые передачи предназначены для:

  • передачи вращательного движения между валами, которые могут иметь параллельные, пересекающиеся или скрещивающиеся оси;
  • преобразования вращательного движения в поступательное, и наоборот (передача “рейка-шестерня”).

Зубчатое колесо передачи с меньшим числом зубьев называется шестернёй , второе колесо с большим числом зубьев называется колесом .

Зубчатые передачи классифицируют по расположению валов :

  • с параллельными осями (цилиндрические с внутренним и внешним зацеплениями);
  • с пересекающимися осями (конические);
  • с перекрестными осями (рейка-шестерня).

Цилиндрические зубчатые передачи () бывают с внешним и внутренним зацеплением. В зависимости от угла наклона зубьев выполняют прямозубые и косозубые колёса. С увеличением угла повышается прочность косозубых передач (за счёт наклона увеличивается площадь контакта зубьев, уменьшаются габариты передачи). Однако в косозубых передачах появляется дополнительная осевая сила, направленная вдоль оси вала и создающая дополнительную нагрузку на опоры. Для уменьшения этой силы угол наклона ограничивают 8-20°. Этот недостаток исключён в шевронной передаче.

Рисунок 1 – Основные виды цилиндрических зубчатых передач

Рисунок 6 – Фрикционные передачи

Трение между элементами может быть сухое, граничное, жидкостное. Жидкостное трение наиболее предпочтительно, так как значительно увеличивает долговечность фрикционной передачи.

Фрикционные передачи делятся :

  • по расположению валов:
    • с параллельными валами;
    • с пересекающимися валами;
  • по характеру контакта:
    • с внешним контактом;
    • с внутренним контактом;
  • по возможности варьирования передаточного отношения:
    • нерегулируемые;
    • регулируемые (фрикционный вариатор);
  • при наличии промежуточных тел в передаче по форме контактирующих тел:
    • цилиндрические;
    • конические;
    • сферические;
    • плоские.

Перечень ссылок

  1. Лекция 16. Механические передачи // Информационно-образовательный портал “Ореанда”. – http://bcoreanda.com/ShowObject.aspx?ID=252 .
  2. Зубчатая передача // Википедия. – http://ru.wikipedia.org/wiki/Зубчатая_передача .
  3. Фрикционная передача // Википедия. – http://ru.wikipedia.org/wiki/Фрикционная_передача .

Вопросы для контроля

  1. Что называют механической передачей, их основные разновидности?
  2. Что представляют собой зубчатые передачи: описание, назначение, классификация, достоинства и недостатки?
  3. Каков принцип работы червячных зубчатых передач, их основные достоинства и недостатки?
  4. Что представляют собой передачи с гибкими звеньями: описание, назначение, классификация?
  5. Какие основные достоинства и недостатки ременных передач в сравнении с цепными?
  6. Что представляют собой фрикционные передачи: описание, назначение, классификация?
<

Применяются зубчатые колёса с несимметричным профилем зуба.

Параметры эвольвентного зубчатого колеса:

  • m - модуль колеса. Модулем зацепления называется линейная величина в π раз меньшая окружного шага P или отношение шага по любой концентрической окружности зубчатого колеса к π , то есть модуль - число миллиметров диаметра делительной окружности приходящееся на один зуб. Тёмное и светлое колёсо имеют одинаковый модуль. Самый главный параметр, стандартизирован , определяется из прочностного расчёта зубчатых передач. Чем больше нагружена передача, тем выше значение модуля. Через него выражаются все остальные параметры. Модуль измеряется в миллиметрах , вычисляется по формуле:
m = d z = p π {\displaystyle \mathbf {m={\frac {d}{z}}={\frac {p}{\pi }}} }
  • z - число зубьев колеса
  • p - шаг зубьев (отмечен сиреневым цветом)
  • d - диаметр делительной окружности (отмечена жёлтым цветом)
  • d a - диаметр окружности вершин тёмного колеса (отмечена красным цветом)
  • d b - диаметр основной окружности - эвольвенты (отмечена зелёным цветом)
  • d f - диаметр окружности впадин тёмного колеса (отмечена синим цветом)
  • h aP +h fP - высота зуба тёмного колеса, x+h aP +h fP - высота зуба светлого колеса

В машиностроении приняты определённые значение модуля зубчатого колеса m для удобства изготовления и замены зубчатых колёс, представляющие собой целые числа или числа с десятичной дробью: 0,5 ; 0,7 ; 1 ; 1,25 ; 1,5 ; 1,75 ; 2 ; 2,5 ; 3 ; 3,5 ; 4 ; 4,5 ; 5 и так далее до 50 . (подробнее см. ГОСТ 9563-60 Колеса зубчатые. Модули)

Высота головки зуба - h aP и высота ножки зуба - h fP - в случае т. н. нулевого зубчатого колеса (изготовленного без смещения, зубчатое колесо с «нулевыми» зубцами) (смещение режущей рейки, нарезающей зубцы, ближе или дальше к заготовке, причем смещение ближе к заготовке наз. отрицательным смещением , а смещение дальше от заготовки наз. положительным ) соотносятся с модулем m следующим образом: h aP = m; h fP = 1,25 m , то есть:

h f P h a P = 1 , 25 {\displaystyle \mathbf {{\frac {h_{fP}}{h_{aP}}}=1,25} }

Отсюда получаем, что высота зуба h (на рисунке не обозначена):

h = h f P + h a P = 2 , 25 m {\displaystyle \mathbf {h={h_{fP}}+{h_{aP}}=2,25m} }

Вообще из рисунка ясно, что диаметр окружности вершин d a больше диаметра окружности впадин d f на двойную высоту зуба h . Исходя из всего этого, если требуется практически определить модуль m зубчатого колеса, не имея нужных данных для вычислений (кроме числа зубьев z ), то необходимо точно измерить его наружный диаметр d a и результат разделить на число зубьев z плюс 2:

m = d a z + 2 {\displaystyle \mathbf {m={\frac {d_{a}}{z+2}}} }

Продольная линия зуба

Зубчатые колеса классифицируются в зависимости от формы продольной линии зуба на:

  • прямозубые
  • косозубые
  • шевронные

Прямозубые колёса

Прямозубые колёса - самый распространённый вид зубчатых колёс. Зубья расположены в радиальных плоскостях, а линия контакта зубьев обеих шестерён параллельна оси вращения. При этом оси обеих шестерён также должны располагаться строго параллельно. Прямозубые колеса имеют наименьшую стоимость, но, в то же время, предельный крутящий момент таких колес ниже, чем косозубых и шевронных.

Косозубые колёса

Косозубые колёса являются усовершенствованным вариантом прямозубых. Их зубья располагаются под углом к оси вращения, а по форме образуют часть винтовой линии.

  • Достоинства:
    • Зацепление таких колёс происходит плавнее, чем у прямозубых, и с меньшим шумом.
    • Площадь контакта увеличена по сравнению с прямозубой передачей, таким образом, предельный крутящий момент, передаваемый зубчатой парой, тоже больше.
  • Недостатками косозубых колёс можно считать следующие факторы:
    • При работе косозубого колеса возникает механическая сила, направленная вдоль оси, что вызывает необходимость применения для установки вала упорных подшипников ;
    • Увеличение площади трения зубьев (что вызывает дополнительные потери мощности на нагрев), которое компенсируется применением специальных смазок.

В целом, косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высоких скоростях, либо имеющих жёсткие ограничения по шумности.

Шевронные колеса

Изобретение шевронной передачи часто приписывают Андре Ситроену , однако на самом деле он лишь выкупил патент на более совершенную схему, которую придумал польский механик-самоучка . Зубья таких колёс изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых колёс со встречным расположением зубьев). Передачи, основанные на таких зубчатых колёсах, обычно называют «шевронными».

Шевронные колёса решают проблему осевой силы. Осевые силы обеих половин такого колеса взаимно компенсируются, поэтому отпадает необходимость в установке валов на упорные подшипники. При этом передача является самоустанавливающейся в осевом направлении, по причине чего в редукторах с шевронными колесами один из валов устанавливают на плавающих опорах (как правило - на подшипниках с короткими цилиндрическими роликами).

Зубчатые колёса с внутренним зацеплением

При жёстких ограничениях на габариты, в планетарных механизмах, в шестерённых насосах с внутренним зацеплением, в приводе башни танка , применяют колёса с зубчатым венцом, нарезанным с внутренней стороны. Вращение ведущего и ведомого колеса совершается в одну сторону. В такой передаче меньше потери на трение, то есть выше КПД.

Секторные колёса

Секторное колесо представляет собой часть обычного колеса любого типа. Такие колёса применяются в тех случаях, когда не требуется вращение звена на полный оборот, и поэтому можно сэкономить на его габаритах.

Колёса с круговыми зубьями

Передача на основе колёс с круговыми зубьями (Передача Новикова) имеет ещё более высокие ходовые качества, чем косозубые - высокую нагрузочную способность зацепления, высокую плавность и бесшумность работы. Однако они ограничены в применении сниженными, при тех же условиях, КПД и ресурсом работы, такие колёса заметно сложнее в производстве. Линия зубьев у них представляет собой окружность радиуса, подбираемого под определённые требования. Контакт поверхностей зубьев происходит в одной точке на линии зацепления, расположенной параллельно осям колёс.

Форма венца зубчатого колеса

конические зубчатые колёса

Примечания

Прямые, косые и шевронные

винтовые

оси валов параллельны

оси валов скрещены

Профиль зубьев

в основном эвольвентный

Фланкирование

Ф ланкирование

Назначение и виды зубчатых передач

Зубчатая передача - это механизм, который с помощью зубчатого зацепления передаёт или преобразует движение с изменением угловых скоростей и моментов.

Зубчатая пара состоит из шестерни и колеса. В большинстве случаев шестерня является ведущим элементом зубчатой пары, а колесо - ведомым, хотя встречается и обратное соотношение. Обычно шестерня имеет меньший диаметр. Как правило, при рассмотрении одинаковых параметров шестерни и колеса, шестерне присваивают индекс 1, колесу - 2. Например, Z 1 - количество зубьев шестерни, Z 2 - количество зубьев колеса.

Зубчатые колёса различаются по форме зубчатого венца, по взаимному расположению валов, по форме зуба относительно оси колеса, по форме профиля зуба, по различным отклонениям от стандартного профиля (корригирование) и т.д. Каждое сочетание перечисленных геометрических особенностей имеет свои особенности выбора конструкции, материала и изготовления колеса.

Форма венца зубчатого колеса

цилиндрические зубчатые колёса

конические зубчатые колёса

Примечания

Форма зубьев относительно оси колеса

Прямые, косые и шевронные

винтовые

Прямые, круговые и тангенциальные

Взаимное расположение осей валов

оси валов параллельны

оси валов скрещены

оси валов пересекаются (межосевой угол может быть как равен 90º; так и отличен от 90º)

Профиль зубьев

в основном эвольвентный

Достоинством является малая чувствительно к отклонению межосевого расстояния и возможность изготовления простым инструментом

Модификация профилей зубьев (корригирование)

Смещение исходного контура: прямозубые - высотное, угловое; косозубые - высотное.

Фланкирование

Смещение исходного контура: высотное, тангенциальное. Сочетание высотной и тангенциальной модификации.

Ф ланкирование применяют для быстроходных зубчатых передач в целях уменьшения сил удара при входе и выходе зубьев их из зацепления

Зубчатые передачи для преобразования вращательного движения в поступательное и наоборот осуществляются цилиндрическим колесом (шестерней) и рейкой.

Зубчатые передачи могут отличаться по условиям работы зубчатого зацепления. Они могут быть как открытыми, так и закрытыми. Открытые передачи не защищены от попадания загрязняющих веществ и работают в условиях со скудной смазкой густой консистенции, либо вообще без смазки.

Зубчатое зацепление используется также в планетарных передачах, в которых ось хотя бы одного зубчатого колеса подвижна.

Цилиндрические зубчатые колёса

Как видно из таблицы прямозубыми могут быть как цилиндрические, так и конические колёса.

Хотя максимальные окружные скорости прямозубых колёс могут доходить до 15 м/с, наиболее часто применяются скорости до 5 м/с. Одним из достоинств прямозубой передачи является отсутствие осевых усилий.

Косозубая передача используется обычно в следующих случаях:

1) если нельзя подобрать цилиндрическую прямозубую пару со стандартным модулем при заданных межосевом расстоянии и передаточном отношении;

2) в случае необходимости иметь малое колесо с небольшим числом зубьев при одновременно высоких требованиях к плавности и равномерности передачи;

3) при повышенных окружных скоростях колёс (при средних и высоких скоростях) и требованиях в отношении бесшумности передачи;

4) при больших передаточных отношениях

Косозубые и шевронные зубчатые колёса в зависимости от качества изготовления могут применяться при окружных скоростях до 30 м/с. Косозубые передачи иногда используются при малых окружных скоростях. Это объясняется некоторыми их преимуществами перед прямозубыми: одновременно в зацеплении находится несколько зубьев, передача вращения происходит более плавно, уменьшаются динамические нагрузки, возникающие вследствие неточности изготовления колёс. Кроме того, изготовление косозубых колёс не требует специального оборудования и оснастки. Одним из недостатков косозубых колёс является наличие осевого усилия, что вызывает необходимость усиления подшипниковых узлов и вала. Поэтому при больших осевых усилиях при передачи больших мощностей рационально применение более сложных шевронных передач, в которых осевые усилия скомпенсированы.

Рисунок 2

Рисунок 3

Цилиндрические передачи с косозубыми (винтовыми) колёсами могут быть как с параллельными осями колёс, так и с пересекающимися.

Вариант с пересекающимися осями колёс возможен в следующих случаях.

1. Оси колёс скрещиваются под углом 90º. В этом случае угол наклона зубьев ведущего колеса больше, чем у ведомого.

2. Оси скрещиваются под углом не равным 90º. В этом случае угол наклона зубьев ведущего колеса больше, чем угол наклона зубьев ведомого колеса. Возможны три сочетания колёс:

а) ведущее колесо винтовое, ведомое - прямозубое;

б) зубья обоих колес винтовые одного направления;

в) зубья обоих колес винтовые разного направления.

Рисунок 4

Цилиндрические передачи с внутренним зацеплением

По сравнению с передачами наружного зацепления цилиндрические передачи с внутренним зацеплением имеют во много раз меньшее относительное скольжение рабочих поверхностей зубьев, меньшее удельное давление между рабочими поверхностями зубьев и меньшие размеры при сравнительно большом передаточном отношении и малом межцентровом расстоянии. Однако они не получили большого распространения, поскольку они более сложны в изготовлении и при их применении не обеспечивается достаточная жесткость валов вследствие консольного расположения колеса и шестерни.

Корригирование цилиндрических зубчатых колёс

Цилиндрические зубчатые колёса могут быть как со смещением исходного контура, так и без смещения исходного контура. Эвольвентное зубчатое зацепление обладает ценным свойством: допускает успешную работу передачи и при изменении расстояния между центрами. Возможно три положения шестерни по отношению к колесу: нормальное, сближенное и раздвинутое. Таким образом, эвольвентное зацепление допускает использование для образования профиля зубьев различных участков эвольвенты, что даёт возможность осуществлять сдвиги профиля как при неизменном расстоянии между центрами (высотная коррекция), так и при раздвинутых или сближенных центрах (угловая коррекция).

Смещение исходного контура является одним из видов модификации профилей зубьев (корригирования). Преимущества эвольвентного зацепления при использовании корригирования:

Уменьшается минимально допустимое число зубьев (увеличивается модуль при том же диаметре шестерни);

Повышается прочность (особенно изгибная, так как зуб утолщается у основания);

Повышается износостойкость;

Повышается плавность эвольвентных передач.

К недостаткам коррегирования можно отнести уменьшение коэффициента перекрытия.

Конические зубчатые колёса

Прямозубые конические колёса применяют при невысоких окружных скоростях (до 2...3 м/с, допустимо до 8 м/с). При более высоких скоростях целесообразно применять колёса с круговыми зубьями, как обеспечивающие более плавное зацепление, меньший шум, большую несущую способность и более технологичные. Прямозубые конические передачи обеспечивают передаточное отношение до 3.

При окружных скоростях, больших 3 м/с, в конических редукторах применяют зубчатые передачи с косыми или криволинейными зубьями, которые благодаря постепенному входу в зацепление и меньшим изменением величины деформации зубьев в процессе зацепления работают с меньшим шумом и меньшими динамическими нагрузками. Кроме того, зубчатые колёса с косыми или криволинейными зубьями лучше работают на изгиб, чем прямозубые. Однако для полного контакта зубьев этих передач требуется прилегание зубьев не только по их ширине, но и по высоте, что повышает требования к изготовлению косозубых передач и колёс с криволинейными зубьями. Благодаря своим преимуществам такие передачи могут применяться при передаточных отношениях до 5 и даже выше.


Рисунок 5

а) с прямыми зубьями, б) с косыми зубьями,

в) с криволинейными зубьями, г) коническая гипоидная передача


Рисунок 6 - Основные элементы зубьев конических колёс

Конические зубчатые колёса с косыми зубьями могут работать с окружной скоростью до 12 м/с, а колёса с криволинейными зубьями - до 35-40 м/с. Наибольшее распространение получили передачи с криволинейными зубьями, нарезанными по спирали, эвольвенте (паллоидные) или окружности (круговые).Конические колёса с криволинейными зубьями могут иметь различное направление спирали. Зубчатое колесо называется правоспиральным, если со стороны вершины конуса зубья наклонены наружу в сторону движения часовой стрелки, в противном случае колесо называется левоспиральным.

Корригирование конических зубчатых колёс

Применяют в основном высотную коррекцию (корригирование) конических колёс. Также для конических колёс применяется тангенциальная коррекция, заключающаяся в утолщении зуба шестерни и утонении зуба колеса. Тангенциальная коррекция конических колёс не требует специального инструмента. Для цилиндрических колёс тангенциальную коррекцию не применяют, так как для она требует специального инструмента. На практике для конических колёс часто применяют высотную коррекцию в сочетании с тангенциальной.

Зубья конических колёс по признаку изменения размеров сечений по длине выполняют трех форм:

Рисунок 7

1.Нормально понижающие зубья. Вершины делительного и внутреннего конусов совпадают. Эту форму применяют для конических передач с прямыми и тангенциальными зубьями, а также ограниченно для передач с круговыми зубьями при mn>2 и Z = 20...100.

Рисунок 8

2. Вершина внутреннего конуса располагается так, что ширина дна впадины колеса постоянна, а толщина зуба по делительному конусу растёт с увеличением расстояния до вершины. Эта форма позволяет обрабатывать одним инструментом сразу обе поверхности зубьев колеса. Поэтому она является основой для колес с круговыми зубьями.

Рисунок 9

3. Равновысокие зубья. Образующие делительного и внутреннего конуса параллельны. Эту форму применяют для круговых зубьев при Z>40, в частности при средних конусных расстояниях 75-750 мм.

Передачи с неэвольвентным профилем

Существуют и альтернативные эвольвентной системе зацепления передачи. К ним можно отнести зацепление Новикова и арочные передачи . В зацеплении Новикова уменьшены следующие недостатки эвольвентного зацепления:

Звездочки, валы, шестеренки, металлообработка Ремонт шестерен в Екатеринбурге, шестерни, Любая шестерня от изготовителя, звездочки, звездочка, шестерня, стоимость шестерни, Шестерни с круговым зубом, ремонт шестерни, коническая пара, зубчатая передача, нарезка зуба шестерни, производство шестерен, Зубчатое колесо круговой зуб, нарезка кругового зуба
круговые зубъя, производство шестерен, крановое колесо, Коническое колесо, Вал шестерни, Шестерни, производство шестерен,
червяк, зубчатая пара, зубчатые колеса, венец червячный, звездочки, шестеренки, червячная пара, колесо червячное, вал червяк, маленькая шестерня,
колесико, пластиковая шестерня, шестеренка, шестеренки