Защита от шума и ультразвука. Методы борьбы с шумом

Производственный шум является общебиологическим раздражителем, который снижает не только слух, но и влияет на сердечнососудистую и нервную системы человека.

Исследования воздействия шума на организм человека показали, что продолжительно и кратковременно действующие шумы, стабильные шумы с одинаковым общим уровнем, но разным спектральным составом, а также импульсные шумы с различным временем нарастания интенсивности до максимума по-разному воздействуют на организм человека.

Воздействие шума на человека может быть подразделено в зависимости от интенсивности и спектра шума на следующие группы:

Очень сильный шум с уровнями 120…140 дБ и выше независимо от спектра способен вызывать механические повреждения органов слуха и быть причиной тяжелых поражений организма;

Сильный шум с уровнями 100…120 дБ на низких частотах, выше 90 дБ на средних и выше, 75…85 дБ на высоких частотах вызывает необратимые изменения в органах слуха, а при длительном воздействии может быть причиной ряда заболеваний и в первую очередь - нервной системы;

Шум более низких уровней 60…75 дБ на средних и высоких частотах оказывает вредное действие на нервную систему человека, занятого работой, требующей сосредоточенного внимания.

Санитарные нормы подразделяют шумы на три класса и устанавливают для каждого из них допустимый уровень:

1 класс - низкочастотные шумы (наибольшие составляющие в спектре расположены ниже частоты 350 Гц, выше которой уровни понижаются) с допусти мым уровнем 90…100 дБ;

2 класс - среднечастотные шумы (наибольшие уровни в спектре расположены ниже частоты 800 Гц, выше которой уровни понижаются) с допустимым уровнем 85…90 дБ;

3 класс - высокочастотные шумы (наибольшие уровни в спектре расположены выше частоты 800 Гц) с допустимым уровнем 75…85 дБ.

Т.е. шум называют низкочастотным с частотой колебаний не более 400 Гц, среднечастотным - 400 …1000 Гц, высокочастотным - более 1000 Гц. По ширине спектра шум классифицируют как широкополосный, включающий почти все частоты звукового давления (уровень измеряется в дБА), и узкополосный (уровень измеряется в дБ). Кроме того, шум подразделяют на: воздушный, распространяющийся в воздушной среде от источника возникновения до места наблюдения, и структурный, передающийся по элементам конструкции и излучаемый их поверхностями.

Хотя частота акустических звуковых колебаний находится в пределах 20...20000 Гц, его нормирование в дБ осуществляется в октавных полосах с частотой 63…8000 Гц постоянного шума. Характеристикой же непостоянного и широкополосного шума является эквивалентный по энергии и восприятию ухом человека уровень звука в дБА. В таблице 4.1 приведены нормируемые параметры звука в кабинах тракторов и других самоходных машин в соответствии с ГОСТ 12.2.120-88 и ГОСТ 12.1.003-83. Отметим, что в соответствии с ГОСТ 12.2.019-86 внешний шум машины не должен превышать 85 дБА на расстоянии 7,5 м от её оси перпендикулярно направлению движения.

Таблица 5.1 - Нормируемые параметры звука в кабине тракторов

Следует заметить, что нормы шума установлены на рабочем месте оператора безотносительно к тому, имеется ли здесь один источник шума или их несколько. Очевидно, что если звуковая мощность, излучаемая одним источником, удовлетворяет предельно допустимому уровню звукового давления на рабочем месте, то при установке здесь нескольких таких же источников указанный предельно допустимый уровень будет превышен из-за их сложений.

Уровни шума, выраженные в децибелах, складывать арифметически нельзя, и здесь общий уровень шума определяется по закону энергетического суммирования.

Таблица 5.2 - Добавка в функции разности уровней источников

Разность уровней двух источников

Как следует из приведенного, если уровень шума одного источника выше уровня другого источника на 8…10 дБ (дБА), то будет преобладать шум более интенсивного источника, т.е. добавка к суммарному уровню шума пренебрежимо мала.

Общий уровень шума различных по интенсивности источников определяется по формуле:

Разность между наибольшим уровнем и другими уровнями шума имеющихся источников их возникновения.

Расчет изменения уровня шума с изменением расстояния от источника ведется по формуле:

ДБ (дБА),

Где L u -уровень шума источника;r- расстояния от источника шума до объекта его восприятия, м.

Наряду с такими интенсивными источниками шума на тракторах, как двигатель и ходовая система, активным источником шума является трансмиссия.

Классификация средств и методов защиты от шума установлена ГОСТ 12.1.029-80, в соответствии с которым, в конструкции должны быть предусмотрены и учтены:

Средства снижения механического шума в источнике его возникновения;

средства снижения воздушного и структурного шума на пути его распространения;

акустические средства защиты от шума (ограждения, экраны, кабины).

Прежде всего, отметим, что шум зубчатых передач обусловлен работой находящихся в зацеплении зубчатых колес (шестерен) и подшипников.

Причиной шума подшипников является ударное воздействие шариков (роликов) на сепаратор и кольца. При этом шум подшипников возрастает с увеличением диаметра шариков (роликов) и частоты вращения. Уровень шума таких подшипников можно рассчитать по формуле:

ДБ (дБА),

n -частота вращения подшипника, мин;

L no - уровень шума подшипника без нагрузки, принимаемый равным 1…5 дБ.

Поскольку подшипники являются стандартными готовыми изделиями, то для снижения их шума в конструкции зубчатых передач они должны быть установлены без перекоса внутреннего кольца, и применена качественная их смазка, которая исключает сухое трение качения и является своеобразным амортизатором при взаимодействии шариков (роликов) с другими элементами подшипников. При этом применяется как жидкая, так и консистентная смазка, дающая несколько больший эффект по сравнению с первой.

Что касается шума, возникающего при взаимодействии зубьев шестерен друг с другом, то здесь необходимо иметь в виду следующее.

Отметим, что речь идет о зубьях с эвольвентным профилем, который, теоретически, при контакте шестерен должен обеспечить безударное и без скольжения обкатывание одного зуба по поверхности смежного. Для обеспечения крутящего момента и необходимой прочности зуба выбираются его модуль и ширина. При этом предполагается, что контакт происходит по всей ширине зуба, и теоретически ""пятно контакта"" должно занимать всю ширину зуба при его соответствующей высоте. Только при этом может быть обеспечен расчетный коэффициент полезного действия передачи.

В реальных условиях при изготовлении самих шестерен, валов для их крепления, стаканов и расточек для установки подшипников, а также корпусов передач невозможно обеспечить идеальную точность размеров этих элементов, поскольку имеется определенное технологическое поле допусков. Это обстоятельство приводит к следующему.

Реальное межцентровое расстояние делительных окружностей смежных шестерен получается больше номинального в пределах допуска. Вследствие этого идеальное зацепление шестерен нарушается, и возникает сначала удар при вхождение зубьев в контакт (сопровождается стуком), а затем проскальзывание одного зуба по поверхности зуба смежной шестерни. Поскольку чистота обработки зубьев не идеальна, это сопровождается ""скрежетом"".

Указанные явления усугубляются ещё и тем, что при изготовлении самих шестерен существуют допуски: на биение делительной окружности относительно оси вращения, колебание толщины зуба, колебание длины общей нормали шестерен, на размеры гладких и шлицевых посадочных отверстий шестерен и др. Если же учесть, что при расточке отверстий для установки подшипников или стаканов под подшипники обуславливается не параллельность валов шестерен, то вследствие возникших перекосов валов теоретическое ""пятно контакта"" на зубьях шестерен искажается, уменьшаясь по площади и смещаясь по поверхности зубьев. Это приводит к увеличению контактных напряжений на поверхности зубьев, вследствие чего шум усиливается.

Отмеченное явление ещё больше проявляет себя, если стенки корпуса передачи выполнены недостаточно жёсткими, и при работе под нагрузкой корпус деформируется. В результате искажений в зацеплении к тому же возникает пульсирующее схождение и расхождение смежных зубьев за один оборот шестерён, что служит причиной ""завывания"" передачи в процессе её работы под нагрузкой.

С позиции снижения шума зубчатых зацеплений очевидным является то, что необходимо повышать их точность и чистоту обработки поверхности зубьев. Повышение точности изготовления зубчатых колес приводит к снижению уровня шума передачи на 3…3,5 дБА во всем рабочем диапазоне нагрузок и скоростей. Учитывая высокую стоимость мероприятий по пассивной защите от шума рабочего места тракториста, повышение точности изготовления и монтажа зубчатых колес КП трактора является необходимым и экономически наиболее целесообразным.

Уровень шума зубчатых зацеплений открытых, сухих (без смазки) коробок передач рассчитывается по формуле:

где Lбн - уровень шума шестерен без нагрузки (принимается равным 75…80 дБА в зависимости от точности изготовления и чистоты обработки поверхности зубьев);

P - окружное усилие, кг.

Как видно из формулы, уменьшение окружной скорости должно снизить уровень шума шестерен. Для этого следует применить шестерни возможно меньшего диаметра путём изменения числа зубьев и модуля с одновременным увеличением их ширины для сохранения прочности зубьев.

Считается, что применение достаточной смазки шестерен снижает уровень шума зацеплений не менее чем на ДL ос =6 дБА. Изолирование же внутренней полости механизма при наличие крышки (с образованием своеобразного кожуха) дает дополнительное снижение шума на ДL н = 5…7 дБА.

Таким образом, уровень излучаемого корпусом коробки передач шума можно найти:

Расчёт зубчатого зацепления на шум

Оценка влияния шума, создаваемого коробкой передач на акустическую обстановку в кабине.

где - уровень шума шестерен без нагрузки (принимается равным 75…80 дБА в зависимости от точности изготовления и чистоты обработки поверхности зубьев);

V - окружная скорость шестерён, м/с;

P - окружное усилие, кH.

Шум зубчатой передачи:

Суммарный шум зубчатых зацеплений:

Расчёт подшипников на шум

где d - диаметр шариков (роликов), мм;

d р.ст = 10 мм - для роликоподшипника;

d р.с. = 16,5 мм - для шарикоподшипника;n - частота вращения подшипника, мин -1 ;

L по - уровень шума подшипника без нагрузки, принимаемый равным 1…5 дБ (дБА).

Для шарикоподшипника:

Для роликоподшипника:

Общий уровень шума различных по интенсивности источников определяем по формуле:

где - наибольший уровень одного из источников;

Разность между наибольшим уровнем и другими

Уровнями шума имеющихся источников их

возникновения.

Уровень излучаемого корпусом коробки передач шума можно найти:

Рассчитаем уровень шума, обусловленный его снижением вследствие удаления корпуса коробки передач от уха водителя на расстояние Y без учета кабины:

Современная шумоизолированная кабина снижает уровень шума на 20…30 дБА, определяем его величину на рабочем месте в кабине:

дБА<дБА на 17,6 дБА.

т.к.L к - существенно меньше нормируемой величиныL к.н = 80 дБА, то шум коробки передач не ухудшит акустическую обстановку в кабине.

Рассчитаю внешний шум машины на расстоянии 7,5 м. от ее оси перпендикулярно направлению движения:

L r = L u - 20lg r - 8 = 93,9 - 20 lg7,5 - 8 = 68,4 дБА

Вывод по разделу

Рассмотрены вопросы по охране труда: шум, воздействие на человека, нормирование, причины возникновения в трансмиссии, меры по снижению, оценка влияния шума трансмиссии (коробки передач) на акустическую обстановку в кабине и внешний шум машины.

Внешний шум машины не должен превышать 85 дБА, в нашем случае 68,4 дБА, следовательно, условие выполнено.

Рассмотренный раздел показывает, что данная конструкция удовлетворяет требованиям безопасности.

В статье описана технология моделирования, целью которой является устранение шума, создаваемого зубчатыми колесами силовых передач. Это довольно неприятный шум с преобладанием высоких частот, возникающий в результате вращательных отклонений (погрешности передачи) из-за формы зубьев и производственных дефектов. Для уменьшения погрешности передачи необходимо определить подходящий профиль зубьев с учетом влияния нескольких факторов.

Данная технология моделирования коробки передач используется в конструировании изделий с 2012 г. На примере показано снижение погрешности передачи и шума шестерен путем оптимизации профиля зубьев с помощью представленной технологии моделирования.

1. Введение

Являясь производителем компонентов в составе группы компаний Yanmar , компания Kanzaki Kokyukoki Mfg. Co., Ltd. проектирует, изготавливает и реализует гидравлическое оборудование и различные трансмиссии. У компании имеется обширный опыт и собственные технологии в самых разных сферах конструирования и производства, особенно шестерен, которые являются основными компонентами кинематических систем. Кроме того, за последние годы тенденция к повышению скорости и комфорта средств передвижения настоятельно требует снижения шума шестерен, чего очень трудно достичь с использованием традиционных технологий. В этой статье описана технология моделирования для снижения шума шестерен, над которой в настоящее время работает Kanzaki Kokyukoki Mfg.

2. Типы шума шестерен

Шум шестерен в трансмиссиях обычно делится на 2 типа: визг и треск (см. таблицу 1). Свист представляет собой тонкий, высокочастотный шум, в основном вызываемый небольшими погрешностями профиля зубьев шестерен и их жесткости. Треск - это звук соприкосновения боковых поверхностей зубьев шестерен, основными источниками которого являются колебания нагрузки, воздействующей на шестерни, и зазоры между боковыми поверхностями зубьев (боковые зазоры). В изделиях Kanzaki Kokyukoki Mfg. главной проблемой чаще всего является визг, поэтому компания уделяет основное внимание тому, чтобы определить подходящий профиль зубьев на стадиях проектирования, конструирования, а также контроля качества изготовленных шестерен.

3. Механизм возникновения визга

Причиной визга является явление, при котором вибрация, возникающая под воздействием небольших отклонений вращения из-за погрешностей профиля зубьев или производственных дефектов, передается через подшипники вала шестерни на корпус, в результате чего возникает вибрация поверхности корпуса (см. рис. 1).

Эти отклонения вращения возникают из-за погрешностей угла вращения зубьев при их зацеплении, что и называется погрешностью передачи.

Причины погрешности передачи, в свою очередь, могут подразделяться на геометрические факторы и факторы жесткости зубьев. Если имеют место геометрические факторы (см. рис. 2), отклонение от идеального эвольвентного зацепления возникает из-за ошибки при монтаже или смещения вала, что приводит к отставанию или опережению угла вращения ведомой шестерни. Кроме того, отклонения угла вращения возникают из-за неровности боковых поверхностей зубьев.

При наличии факторов, связанных с жесткостью зубьев (см. рис. 3), жесткость зацепления изменяется в зависимости от того, сколько зубьев находится в контакте в данный момент времени, в результате чего возникают отклонения угла вращения ведомой шестерни.

Другими словами, геометрические факторы и факторы жесткости зубьев действуют совместно, влияя на погрешность передачи и создавая тем самым возбуждающую силу. Таким образом, при конструировании шестерни с низким уровнем шума необходимо учитывать эти факторы для выбора подходящего профиля зубьев.

4. Как уменьшить погрешность передачи

Как указано выше, для снижения погрешности передачи в шестернях необходимо учитывать несколько факторов.
На рис. 4 показана взаимосвязь между крутящим моментом и погрешностью передачи для геликоидальной шестерни с идеальным эвольвентным профилем (неизмененным) и другой шестерни со специально измененным профилем зубьев. Здесь для изменения профиля зубьев специально вводится отклонение от идеального эвольвентного профиля, как показано на рис. 4 (справа). Неизмененная шестерня с меньшей погрешностью профиля имеет оптимальные рабочие характеристики в отношении колебаний погрешности передачи при низком крутящем моменте нагрузки, в то время как шестерня с измененным профилем работает лучше, когда крутящий момент нагрузки выше некоторого значения. Это показывает, как можно свести к минимуму колебания погрешности передачи, изменив профиль зубьев в соответствии с нагрузкой на шестерню.

Чтобы спрогнозировать влияние различных явлений на шестерню в кинематической системе и учесть его на стадии проектирования, компания Kanzaki Kokyukoki Mfg. разработала технологию моделирования, которая применяется ею при проектировании изделий с 2012 г (см. рис. 5). При использовании данных о профилях зубьев для различных типов шестерен в качестве исходных данных технология позволяет оценить такие параметры, как нагрузочная способность и погрешность передачи, в реальных рабочих условиях, анализируя деформацию вала зубчатой передачи и подшипников.

5. Пример применения технологии в проектировании изделий

На примере ниже показано снижение погрешности передачи в коробке передач коммунальной машины. В этом случае целью является снижение погрешности передачи путем анализа возможного изменения трехмерного профиля зубьев конической шестерни на начальной стадии проектирования с учетом отклонений профиля зубьев в результате деформации вала, подшипников и других компонентов, как показано на рис. 6.

Чтобы подтвердить повышение рабочих характеристик улучшенного профиля зубьев, были измерены профили зубьев, погрешность передачи и шум зацепления находящейся в производстве шестерни и ее улучшенного варианта.
Результаты для погрешности передачи представлены на рис. 7. Измерения показаны слева, а результаты анализа этих измерений с отслеживанием порядка зацепления - справа. Результаты сравнения порядка зацепления демонстрируют, что улучшенная шестерня имеет меньшее отклонение погрешности передачи.
Результаты измерений шума зацепления, представленные на рис. 8, показывают значительное снижение шума в улучшенной шестерне на частотах зацепления второго и третьего порядка.

6. Заключение

В статье описана технология моделирования, разработанная компанией Kanzaki Kokyukoki Mfg, входящая в состав группы компаний . для снижения шума шестерен. Эта технология используется в новых разработках, где помогает прогнозировать рабочие характеристики на стадии проектирования. В будущем ожидается, что эта технология моделирования и дальше будет способствовать разработке лучших решений для заказчиков посредством уменьшения размеров и повышения выходной мощности и надежности изделий.

Зная из формул (12) и (15), от чего зависит уровень звукового давления в расчетной точке, для снижения шума могут быть применены следующие методы:

1) уменьшение шума в источнике;

2) изменение направленности излучения;

3) рациональная планировка предприятий и цехов, акустическая обработка помещений;

4) уменьшение шума на пути его распространения. Уменьшение шума в источнике. Борьба с шумом посредством

уменьшения его в источнике (уменьшение Lp) является наиболее рациональной.

Шум механизмов возникает вследствие упругих колебаний как всей машины в целом, так и отдельных ее деталей. Причины возникновения этих колебаний — механические, аэродинамические и электрические явления, определяемые конструкцией и характером работы механизма, а также технологические неточности, допущенные при его изготовлении и, наконец, условиями эксплуатации. В связи с этим различают шумы механического, аэродинамического и электромагнитного происхождения.

Механические шумы. Факторы, вызывающие шумы механического происхождения, следующие: инерционные возмущающие силы, возникающие вследствие движения деталей механизма с переменными ускорениями; соударение деталей в сочленениях вследствие неизбежных зазоров; трение в сочленениях деталей механизмов; ударные процессы (ковка, штамповка) и т. д.

Основными источниками шума, происхождение которого не связано непосредственно с технологическими операциями, выполняемыми машиной, являются прежде всего подшипники качения и зубчатые передачи, а также неуравновешенные вращающиеся части.

Частоты колебаний, а следовательно, и шума, создаваемого

неуравновешенностью, кратны n/60 (n — скорость вращения, об/мин).

Спектр шума шарикоподшипников занимает широкую полосу частот. Звуковая мощность Р зависит от скорости вращения машины:

Увеличение скоростей вращения подшипников качения с пх до п2 (об/мин) приводит к возрастанию шума на величину ΔL (дБ):

Зубчатые передачи — источники шума в широком диапазоне частот. Основными причинами возникновения шума являются деформации сопрягаемых зубьев под действием передаваемой нагрузки и динамические процессы в зацеплении, обусловленные неточностями изготовления колес. Шум имеет дискретный характер.

Шум зубчатых передач возрастает с увеличением скоростей вращения колес и нагрузки.

Уменьшение механического шума может быть достигнуто путем совершенствования технологических процессов и оборудования, заменяя устаревшие процессы и оборудование новыми. Например, внедрение автоматической сварки вместо ручной устраняет образование брызг на металле, что позволяет исключить шумную операцию по зачистке сварного шва. Применение фрезерных тракторов для обработки кромок металла под сварку вместо пневмозубил делает этот процесс значительно менее шумным.

Нередко повышенный уровень шума является следствием неисправности или износа механизмов, и в этом случае своевременный ремонт позволяет снизить шум.

Необходимо отметить, что проведение многих мероприятий по борьбе с вибрациями (см. гл. 4) дает одновременно и спижение шума. Для уменьшения механического шума необходимо:

заменять ударные процессы и механизмы безударными; например, применять в технологическом цикле оборудование с гидроприводом вместо оборудования с кривошипными или эксцентриковыми приводами;

заменять штамповку прессованием, клепку — сваркой, обрубку — резкой и т. д.;

заменять возвратно-поступательное движение деталей равномерным вращательным движением;

применять вместо прямозубых шестерен косозубые и шевронные, а также повышать классы точности обработки и чистоты поверхности шестерен; так, ликвидация погрешностей в зацеплении шестерен дает снижение шума на 5—10 дБ, замена прямозубых шестерен шевронными — на 5 дБ;

по возможности заменять зубчатые и цепные передачи клиноременными и зубчатоременными; например, замена зубчатой передачи на клиноременную снижает шум на 10—15 дБ;

заменять, когда это возможно, подшипники качения на подшипники скольжения; такая замена снижает шумы на 10—15 дБ;

по возможности заменять металлические детали деталями из пластмасс и других «незвучных» материалов, либо перемежать соударяемые и трущиеся металлические детали с деталями из «незвучных» материалов, например, применять текстолитовые или капроновые шестерни в паре со стальными; так, замена одной из стальных шестерен (в паре) на капроновую снижает шум на 10—12 дБ;

использование пластмасс при изготовлении деталей корпусов дает хорошие результаты. Например, замена стальных крышек редуктора пластмассовыми приводит к снижению шума на 2—6 дБ на средних частотах и на 7—15 дБ — на высоких;

при выборе металла для изготовления деталей необходимо учитывать, что внутреннее трение в различных металлах неодинаково, а следовательно, различна «звучность», например, обычная углеродистая сталь, легированная сталь являются более «звучными», чем чугун; большим трением обладают после закалки сплавы из марганца с 15—20% меди и магниевые сплавы; детали из них при ударах звучат глухо и ослабление; хромирование стальных деталей, например турбинных лопаток, уменьшает их «звучность»; при возрастании температуры металлов на 100—150° С они становятся менее звучными;

более широко применять принудительную смазку трущихся поверхностей в сочленениях, что также снижает их износ;

применять балансировку вращающихся элементов машин;

применять прокладочные материалы и упругие вставки в соединениях, чтобы исключить или уменьшить передачи колебаний от одной детали или части агрегата к другой; так, при правке металлических листов наковальню нужно устанавливать на прокладку из демпфирующего материала.

Установка мягких прокладок в местах падения деталей с конвейера или сбрасывания со станков, прокатных станов может существенно ослабить шум.

У прутковых автоматов и револьверных станков источником шума являются трубы, в которых вращается прутковый материал. Для снижения этого шума применяют различные конструкции малошумных труб: двухстенные трубы, между которыми проложена резина, трубы с наружной поверхностью, обернутой резиной и т. п.

Для уменьшения шума, возникающего при работе галтовочных барабанов, дробилок, шаровых мельниц и других устройств наружные стенки барабана облицовывают листовой резиной, асбестовым картоном или другими подобными демпфирующими материалами.

Аэродинамические шумы. Аэродинамические процессы играют большую роль в современной технике. Как правило, всякое течение газа или жидкости сопровождается шумом, и поэтому с вопросами борьбы с аэродинамическими шумами приходится встречаться очень часто. Эти шумы являются главной составляющей шума вентиляторов, воздуходувок, компрессоров, газовых турбин, выпусков пара и воздуха в атмосферу, двигателей внутреннего сгорания, насосов и т. п.

К источникам аэрогидродинамического шума относятся: вихревые процессы в потоке рабочей среды; колебания среды,4 вызываемые вращением лопастных колес; пульсации давления рабочей среды; колебания среды, вызываемые неоднородностью потока, поступающего на лопатки колес. В гидравлических механизмах к этим источникам шума добавляются также кавитациониые процессы.

При движении тела в воздушной или газовой среде, при обдувании тела потоком среды вблизи поверхности тела образуется периодически отрывающиеся от него вихри (рис. 43, а). Возникающие при срыве вихрей сжатия и разрежения среды распространяются в виде звуковой волны. Такой звук называется вихревым.

Частота вихревого звука (Гц) выражается формулой

f=Sh(v/D)

где Sh — число Струхаля, определяемое опытным путем; v — скорость потока, м/с; D — проекция ширины лобовой поверхности тела на плоскость, перпендикулярную v; для шара и цилиндра величиной D являются их диаметры.

Вихревой шум при обтекании тел сложной формы имеет сплошной спектр.

Звуковая мощность вихревого шума (Вт)

где к — коэффициент, зависящий от формы тела и режима течения; сх — коэффициент лобового сопротивления.

Отсюда видно, что для уменьшения вихревого шума необходимо прежде всего уменьшить скорости обтекания и улучшить аэродинамику тел.

Рис. 43. Аэродинамический шум:

а — вихревой; б — шум от неоднородности потока; в — шум струи; 1 — препятствие; 2 — поле скоростей в абсолютном движении; 3 — то же в относительном движении; 4 — лопатка колеса; 5 — направление вращения

Для гидравлических машин с вращающимися рабочими колесами (вентиляторы, турбины, насосы и т. д.) имеет место шум от неоднородного потока.

Неоднородность потока на входе в колесо или на его выходе, возникающая из-за плохо обтекаемых деталей конструкции или направляющего аппарата, приводит к нестационарному обтеканию лопаток колеса и неподвижных элементов, расположенных у колеса и, как следствие этого, — к шуму от неоднородности (шуму от препятствий в потоке, лопаточному, сиренному шуму).

Шумообразование от неоднородности потока, так же как и вихревой шум, вызывается пульсациями давления на препятствиях и лопатках (рис. 43, б).

В относительном движении скорость на входе в колесо равна геометрической сумме скорости в абсолютном движении и окружной скорости. При попадании лопатки в аэродинамическую тень от препятствия (впадина на профиле абсолютных скоростей) относительная скорость изменяется по величине и направлению и влечет за собой изменение угла атаки, а следовательно, и вектора силы, действующей на лопатку, что вызывает появление звукового импульса. _ Звуковая мощность шума от неоднородности потока также определяется выражением (15), поскольку природа обоих шумов одинакова.

Зубчатые передачи часто являются главным источником вибраций и шума в разнообразных агрегатах. С повышением скорости зубчатых передач проблема снижения вибраций и шума приобретает все большее значение. Уровень шума — один из важнейших эксплуатационных показателей зубчатых передач и редукторов.

Уровень шума зубчатых передач определяется точностью зубчатых зацеплений, инерционными и жесткостными параметрами системы. Погрешности зацепления являются возбудителями вынужденных колебаний, а инерционные и жесткостные параметры определяют собственные колебания системы.

Обычно фактические размеры основных шагов ведущего и ведомого колес различны. Это приводит к ударам сопряженных зубьев, когда они входят в зацепление. В результате возникает колебательный процесс. Сила удара находится в прямой зависимости от величины погрешности зацепления, обусловливаемой разностью основных шагов ведущего и ведомого колес и их окружной скоростью. При возрастании скорости вращения вала соответственно возрастает и интенсивность шума.

Оптимальный уровень шума соответствует не нулевому, а некоторому положительному значению разности основных шагов, определяемому величиной упругой деформации зубьев. Другой причиной вибраций и шума зубчатых передач является мгновенное изменение жесткости зубчатого зацепления при переходе от двухпарного зацепления зубьев к однопарному, а также мгновенное изменение направления силы трения, действующей между рабочими профилями зубьев в полосе зацепления.

Рис. 38. Различные формы пятна контакта зубчатых пар

Погрешности профиля зубьев, возникающие в процессе их нарезки, а также огранка профиля зубьев в результате прерывности процесса резания вызывают ударные импульсы.

Неправильное закрепление инструмента и заготовки при нарезании зубьев также является причиной возникновения, циклических погрешностей у зубчатых колес, а следовательно, и интенсивного шума и вибраций. Например, неперпендикулярность торцов относительно оси заготовки при ее закреплении на столе зуборезного станка вызывает отклонение геометрической оси нарезаемой заготовки относительно оси вращения стола, в результате чего возникает погрешность в направлении зубьев. Эта погрешность обусловливает неудовлетворительную форму пятна контакта (площади соприкосновения) между сопрягающимися зубьями, что способствует повышению шума и вибраций.

На рис. 38 показаны различные формы пятен контактов зубчатых пар. При форме пятна контакта, показанной на рис. 38, а, зубчатая передача издает шелест или легкое гудение низкого тона; такие зубья можно считать годными.

При форме пятна, показанной на рис. 38, б, без нагрузки слышен шелест, а под нагрузкой — вой; эти зубья негодны. Также представляют брак и зубья с формами пятен контактов, показанных на рис. 38, в и г. Без нагрузки они издают мелкий стук, а под нагрузкой — вой и частый перемежающийся стук, в другом — частый перемежающийся стук без нагрузки и вой под нагрузкой.

Возникновению повышенного шума способствуют погрешности расточки базовых отверстий в корпусе зубчатой передачи. При тщательном изготовлении зубчатых колес перекосы валов, на которых они монтируются, могут привести к результатам, аналогичным тем, какие получаются при погрешностях самих зубчатых колес.

Снижение вибраций и шума зубчатых передач можно достигнуть следующими способами.



Рис. 39. Форма зубьев :

а — обычные; б — бочкообразные

Первый способ — изменение формы зубьев (рис. 39). Если им придать бочкообразную форму, то в результате улучшения контакта между зубьями и уменьшения влияния перекоса зубьев шум взаимодействующих зубчатых колес снизится на 3—4 дБ.

Другой способ снижения вибраций и шума — фланкирование профилей зубьев для компенсации погрешностей при изготовлении и монтаже зубчатых колес, а также для уменьшения влияния деформации зубьев при их работе под нагрузкой.

Улучшается вибрационная и шумовая характеристика зубчатых колес в результате введения операции шевингования зубьев, повышающей плавность зацепления. Некоторого снижения вибраций и шума можно достигнуть применением отделочной операции — притирки зубьев при помощи специальных притиров.

Одним из факторов, определяющих способность системы зубчатого привода гасить колебания, является материал колеса. Заменой в зубчатой паре хотя бы одного колеса на изготовленное из пластмассы можно добиться значительного эффекта в снижении уровня шума. Исследованиями установлено, что шум зубчатых колес из пластмассы на всех скоростных режимах и нагрузках ниже шума стальных колес, причем наиболее эффективное снижение шума достигается в высокоскоростных передачах, на резонансных режимах и повышенных нагрузках.