Что такое биофизика. Что изучает биофизика

Одной из самых древних наук является, безусловно, биология. Интерес людей к процессам, происходящим внутри них самих и окружающих существ, возник за несколько тысяч лет до нашей эры.

Наблюдения за животными, растениями, природными процессами составляло важную часть жизни людей. С течением времени знаний накопилось очень много, усовершенствовались и развились методы изучения живой природы и механизмов, в ней происходящих. Это привело к возникновению множества разделов, составляющих в общей сложности комплексную науку.

Биологические исследования в разных областях жизни позволяют получать новые ценные данные, важные для понимания устройства биомассы планеты. Использовать эти знания для практических целей человека (освоение космоса, медицина, сельское хозяйство, химическая промышленность и так далее).

Многие открытия позволили сделать биологические исследования в сфере внутреннего строения и функционирования всех живых систем. Изучен молекулярный состав организмов, их микростроение, выделены и изучены многие гены из генома человека и животных, растений. Заслуги биотехнологии, клеточной и позволяют получать несколько урожаев растений за сезон, а также выводить породы животных, дающих больше мяса, молока и яиц.

Изучение микроорганизмов позволило получить антибиотики и создать десятки и сотни вакцин, позволяющих побеждать множество болезней, даже те, что раньше целыми эпидемиями уносили тысячи жизней людей и животных.

Поэтому современная наука биология - это безграничные возможности человечества во многих отраслях науки, промышленности и сохранении здоровья.

Классификация биологических наук

Одними из самых первых появились частные разделы науки биологии. Такие, как ботаника, зоология, анатомия и систематика. Позже стали формироваться более зависимые от технического оснащения дисциплины - микробиология, вирусология, физиология и так далее.

Существует ряд молодых и прогрессивных наук, сформировавшихся только в XX-XXI столетии и играющих большую роль в современном развитии биологии.

Существует не одна, а несколько классификаций, по которым можно ранжировать биологические науки. Список их довольно внушительный во всех случаях, рассмотрим одну из них.

Биология Частные науки Ботаника занимается изучением внешнего и внутреннего строения, физиологических процессов, филогенеза и распространения в природе всех существующих на планете растений (флора)

Включает следующие разделы:

  • альгология;
  • дендрология;
  • систематика;
  • анатомия;
  • морфология;
  • физиология;
  • бриология;
  • палеоботаника;
  • экология;
  • геоботаника;
  • этноботаника;
  • размножение растений.
Зоология занимается изучением внешнего и внутреннего строения, физиологических процессов, филогенеза и распространения в природе всех существующих на планете животных (фауна)

Дисциплины, входящие в состав:

Дисциплины:

  • топографическая анатомия;
  • сравнительная;
  • систематическая;
  • возрастная;
  • пластическая;
  • функциональная;
  • экспериментальная.
Антропология ряд дисциплин, в комплексе изучающих развитие и формирование человека в биологической и социальной среде Разделы: философская, судебная, религиозная, физическая, социальная, культурная, визуальная.
Микробиология изучает самые мелкие организмы живой природы, от до бактерий и вирусов Дисциплины: вирусология, бактериология, медицинская микробиология, микология, промышленная, техническая, сельскохозяйственная, космическая микробиология

Общие науки

Систематика в задачи входит разработка основ для классификации всего живого на нашей планете с целью строгой упорядоченности и идентификации любого представителя биомассы
Морфология описание внешних признаков, внутреннего строения и топографии органов всех живых существ Разделы: растений, животных, микроорганизмов, грибов
Физиология изучает особенности функционирования той или иной системы, органа или части организма, механизмы всех процессов, обеспечивающих его жизнедеятельность Растений, животных, человека, микроорганизмов
Экология наука о взаимоотношениях живых существ друг с другом, средой обитания и человеком Геоэкология, общая, социальная, промышленная
Генетика изучает геном живых существ, механизмы наследственности и изменчивости признаков под влиянием различных условий, а также исторические изменения в генотипе в течение эволюционных преобразований

Биогеография

рассматривает расселение и распространение отдельных видов живых существ по планете

Эволюционное учение

раскрывает механизмы исторического развития человека и других живых систем на планете. Их происхождение и становление
Комплексные науки, возникшие на стыке друг с другом

Биохимия

изучает процессы, происходящие в клетках живых существ с химической точки зрения

Биотехнология

рассматривает возможности использования организмов, их продуктов и или частей для нужд человека

Молекулярная биология

изучает механизмы передачи, хранения и использования наследственной информации живыми существами, а также функции и тонкое строение белков, ДНК и РНК. Смежные науки: генная и клеточная инженерия, молекулярная генетика, биоинформатика, протеомика, геномика

Биофизика

это наука, изучающая все возможные физические процессы, происходящие во всех живых организмах, от вирусов до человека Разделы данной дисциплины будут рассмотрены ниже

Таким образом, мы постарались охватить основное разнообразие, которое представляют собой биологические науки. Список этот с развитием техники и методов изучения расширяется, пополняется. Поэтому единой классификации биологии не существует на сегодняшний день.

Прогрессивные бионауки и их значение

К самым молодым, современным и прогрессивным наукам биологии относятся такие, как:

  • биотехнология;
  • молекулярная биология;
  • космическая биология;
  • биофизика;
  • биохимия.

Каждая из этих наук сформировалась не ранее XX века, а потому по праву считается молодой, интенсивно развивающейся и наиболее значимой для практической деятельности человека.

Остановимся на такой из них, как биофизика. Это наука, появившаяся приблизительно в 1945 году и ставшая важной частью всей биологической системы.

Что такое биофизика?

Чтобы ответить на этот вопрос, в первую очередь следует указать на ее тесный контакт с химией и биологией. В некоторых вопросах границы между этими науками настолько тесные, что сложно разобрать, какая из них конкретно задействована и в приоритете. Поэтому рассматривать биофизику стоит как комплексную науку, изучающую глубокие физические и химические процессы, происходящие в живых системах на уровне как молекул, клеток, органов, так и на уровне Биосферы в целом.

Как и любая другая, биофизика - наука, имеющая свой объект изучения, цели и задачи, а также достойные и значимые результаты. Кроме того, эта дисциплина плотно коррелирует с несколькими новыми направлениями.

Объекты исследования

Ими для биофизики являются биосистемы на разных организационных уровнях.

  1. вирусы, одноклеточные грибы и водоросли).
  2. Простейшие животные.
  3. Отдельные клетки и их структурные части (органеллы).
  4. Растения.
  5. Животные (в том числе человек).
  6. Экологические сообщества.

То есть биофизика - это исследование живого с точки зрения физических процессов, в нем происходящих.

Задачи науки

Первоначально задачи биофизиков были в том, чтобы доказать наличие физических процессов и явлений в жизнедеятельности живых существ и изучить их, выяснив природу и значение.

Современные задачи данной науки можно сформулировать так:

  1. Изучить структуру генов и механизмы, сопровождающие их передачу и хранение, видоизменения (мутации).
  2. Рассмотреть многие аспекты клеточной биологии (взаимодействие клеток друг с другом, хромосомные и генетические взаимодействия и другие процессы).
  3. Изучить в комплексе с молекулярной биологией молекулы полимеров (белков, нуклеиновых кислот, полисахаридов).
  4. Выявить влияние космогеофизических факторов на течение всех физических и химических процессов в живых организмах.
  5. Более глубоко вскрыть механизмы фотобиологии (фотосинтез, фотопериодизм и так далее).
  6. Внедрить и разработать методы математического моделирования.
  7. Применить результаты нанотехнологии для изучения живых систем.

Из этого списка очевидно, что биофизика изучает очень много значимых и серьезных проблем современного общества, и результаты деятельности этой науки имеют важное значение для человека и его жизни.

История формирования

Как наука биофизика зародилась сравнительно недавно - в 1945 году, когда издал свой труд "Что такое жизнь с точки зрения физики". Именно он первым заметил и обозначил, что многие законы физики (термодинамические, законы квантовой механики) имеют место быть именно в жизнедеятельности и работе организмов живых существ.

Благодаря трудам этого человека наука биофизика начала свое интенсивное развитие. Однако еще ранее, в 1922 году, в России создается институт биофизики, которым руководит П. П. Лазарев. Там основную роль отводят изучению природы возбуждения в тканях и органах. Результатом стало выявление значение ионов в этом процессе.

  1. Гальвани открывает электричество и его значение для живых тканей (биоэлектричество).
  2. А. Л. Чижевский - отец нескольких дисциплин, изучающих влияние космоса на Биосферу, а также ионизационное излучение и электрогемодинамику.
  3. Подробная структура белковых молекул была изучена только после открытия метода РСА (рентгено-структурного анализа). Это было сделано учеными Перуц и Кендрю (1962 год).
  4. В этом же году открыта трехмерная структура ДНК (Морис Уилкинс).
  5. Неэр и Закман в 1991 году сумели разработать метод локальной фиксации электрического потенциала.

Также ряд других открытий позволил науке биофизике встать на путь интенсивной и прогрессивной модернизации в развитии и становлении.

Разделы биофизики

Существует целый ряд дисциплин, составляющих эту науку. Рассмотрим самые основные из них.

  1. Биофизика сложных систем - рассматривает все сложные механизмы саморегуляции многоклеточных организмов (системогенез, морфогенез, синергогенез). Также данной дисциплиной изучаются особенности физической составляющей процессов онтогенеза и эволюционного развития, уровней организации организмов.
  2. Биоакустика и биофизика сенсорных систем - изучает сенсорные системы живых организмов (зрение, слух, рецепция, речь и другие), способы трансляции различных сигналов. Выявляет механизмы преобразования энергии при восприятии организмами внешних воздействий (раздражений).
  3. Теоретическая биофизика - включает ряд поднаук, занимающихся изучением термодинамики биологических процессов, построением математических моделей структурных частей организмов. Также рассматривает кинетические процессы.
  4. Молекулярная биофизика - рассматривает глубокие механизмы структурной организации и функционирования таких биополимеров, как ДНК, РНК, белки, полисахариды. Занимается построением моделей и графических изображений этих молекул, прогнозирует поведение и формирование их в живых системах. Также данная дисциплина строит надмолекулярные и субмолекулярные системы с целью определения механизма построения и действия биополимеров в живых системах.
  5. Биофизика клетки. Изучает самые важные клеточные процессы: дифференцирование, деление, возбуждение и биопотенциалы мембранной структуры. Особое внимание уделяется механизмам мембранного транспорта веществ, разности потенциалов, свойствам и структуре мембраны и окружающих ее частей.
  6. Биофизика метаболизма. Основные рассматриваемые соляризация и адаптация к ней организмов, гемодинамика, теплорегуляция, метаболизм, влияние ионизационных лучей.
  7. Прикладная биофизика. Состоит из нескольких дисциплин: биоинформатика, биометрия, биомеханика, исследование эволюционных процессов и онтогенеза, патологическая (медицинская) биофизика. Объекты изучения прикладной биофизики - опорно-двигательный аппарат, способы движения, способы распознавания людей по физическим чертам. Особого внимания заслуживает медицинская биофизика. Она рассматривает патологические процессы в организмах, способы реконструкции поврежденных участков молекул или структур или их компенсацию. Дает материал для биотехнологии. Имеет большое значение в предупреждении развития заболеваний, особенно генетического характера, их устранении и объяснении механизмов воздействия.
  8. Биофизика среды обитания - изучает физическое воздействие как местных сред обитания существ, так и влияние ближних и дальних субъектов космического пространства. Также рассматривает биоритмы, влияние погодных условий и биополей на существа. Разрабатывает приемы мероприятий по профилактике негативных воздействий

Все эти дисциплины вносят колоссальный вклад в развитие понимания механизмов жизнедеятельности живых систем, влияния на них биосферы и различных условий.

Современные достижения

Можно назвать несколько самых значительных событий, которые относятся к достижениям биофизики:

  • вскрыты механизмы клонирования организмов;
  • изучены особенности превращений и роли окиси азота в живых системах;
  • установлена взаимосвязь малых и матричных РНК, что в будущем позволит найти решение многих медицинских проблем (устранения заболеваний);
  • открыта физическая природа автоволн;
  • благодаря работам молекулярных биофизиков изучены аспекты синтеза и репликации ДНК, что повлекло за собой возможность создания целого ряда новых лекарств от серьезных и сложных заболеваний;
  • созданы компьютерные модели всех реакций, сопровождающих процесс фотосинтеза;
  • разработаны методы ультразвукового исследования организма;
  • установлена связь между космогеофизическими и биохимическими процессами;
  • предсказано изменение климата на планете;
  • открытие значения фермента урокеназы в предупреждении заболеваний тромбозов и устранения последствий после инсультов;
  • также сделан ряд открытий по структуре белка, кровеносной системе и другим частям организма.

Институт биофизики в России

В нашей стране существует им. М. В. Ломоносова. На базе этого учебного заведения действует факультет биофизики. Именно он осуществляет подготовку квалифицированных специалистов для работы в этой области.

Очень важно дать качественный старт будущим профессионалам. Их ждет сложная работа. Биофизик обязан разбираться во всех тонкостях процессов, происходящих в живых существах. Кроме того, студенты должны разбираться и в физике. Ведь это комплексная наука - биофизика. Лекции строятся таким образом, чтобы объять все дисциплины, связанные и составляющие биофизику, и охватить рассмотрение вопросов как биологического, так и физического характера.

Биофизика - раздел физики и современной биологии, изучающий физические аспекты существования живой природы на всех её уровнях, начиная от молекул и клеток и заканчивая биосферой в целом; это наука о физических процессах, протекающих в биологических системах разного уровня организации и о влиянии на биологические объекты различных физических факторов. Биофизика призвана выявлять связи между физическими механизмами, лежащими в основе организации живых объектов и биологическими особенностями их жизнедеятельности. Обобщённо можно сказать, что биофизика изучает особенности функционирования физических законов на биологическом уровне организации вещества. Биофизика - наука междисциплинарная и для работы в ней требуются знания физики, биологии, химии и медицины. Поэтому биофизически ориентированные исследования проводятся не только в специализированных институтах, но также и в биологических, химических, фармакологических и медицинских. В биофизике выделяют следующие разделы: кинетика биологических процессов; термодинамика биологических процессов: преобразования энергии в живых структурах; молекулярная биофизика; биофизика мембранных процессов: свойства биологических мембран и их частей; биофизика фотобиологических процессов; радиационная биофизика; математическая биофизика и др.

Биологические объекты, как правило, очень сложны и на протекающие в них процессы влияют многие факторы, которые часто зависят друг от друга. Физика позволяет создать упрощенные модели объекта, которые описываются законами термодинамики, электродинамики, квантовой и классической механики. С помощью соотношения физических данных с биологическими можно получить более глубокое понимание процессов в исследуемом биологическом объекте.

2. Структурные основы цитоплазматической мембраны её биологическое значение.

Живая клетка – элементарная живая система, являющаяся основой строения всех животных и растений.

Важнейшими условиями существования клетки являются:

1) Автономность по отношению к окружающей среде (вещество клетки не должно смешиваться с веществом окружения);

2) Постоянный, регулируемый обмен веществом и энергией с окружающей средой. Эти 2 условия обеспечиваются нормальным функционированием биологических мембран.

С точки зрения структуры мембрана представляет собой матрицу для мембранных ферментов, рецепторов и других компонентов, создающих барьерную функцию. Молекулы фосфолипидов состоят из полярной головки (П), в состав которой входит одно из полярных соединений (холин, этаноламин и др.) и неполярного хвоста (Г), который содержит глицерин, жирные кислоты, фосфорную кислоту. Фосфолипидные молекулы обладают свойством амфильности: полярная головка гидрофильна, т.е. смачивается водой, а «хвост» является гидрофобным, т.е. не смачивается водой. По форме молекулы фосфолипидов представляют сплющенные цилиндры, ¼ которых гидрофильна, а ¾ гидрофобны. В водных растворах такие молекулы самособираются, стараясь спрятать от воды гидрофобные хвосты, и образуют двойной фосфолипидный слой – собственно основу мембраны. В этот слой встраиваются поверхностные (ПБ) и интегральные (ИБ) белки. Поверхностные белки удерживаются электростатическими силами, а интегральные – прочными гидрофобными взаимодействиями. Также в состав мембраны могут входить белки 3-го типа – эти белки насквозь пронизывают мембрану. Белки 4-го типа образуют белковые каналы. Фосфолипидные молекулы могут быть лишены одно из хвостов, в таком случае они перестраиваются и образуют поры а мембране, что нарушает барьерную функцию мембраны. Такая модель мембраны получила название жидкостно-мозаичной и является общепринятой.

Выделяют 3 основные функции биологических мембран:

1) Барьерная – обеспечивает селективный, регулируемый активный и пассивный обмен веществом с окружающей средой;

2) Матричная – обеспечивает определённое взаимное расположение и ориентацию мембранных белков, обеспечивает их оптимальное взаимодействие;

3) Механическая - обеспечивает прочность и автономность клетки и внутриклеточных структур.

Кроме этого выделяют другие функции:

1) Энергетическая – синтез АТФ на внутренней мембране митохондрий;

2) Генерация и проведение биопотенциалов;

3) Рецепторная (большое кол-во рецепторов на наружной поверхности мембраны).

Что изучает биофизика?

Раздел 1. Общая биофизика. Включает в себя термодинамику биологических систем, кинетику биологических процессов, фотобиологию и молекулярную биофизику.

Биологическая термодинамика, или термодинамика биологических систем , изучает процессы превращения вещества и энергии в живых организмах. Этот раздел биофизики до сих пор создает почву для дискуссий о том, выполняются ли законы термодинамики в живых организмах. Основу этому разделу положили уже упомянутые выше работы А. Лавуазье и П.Лапласа, доказавшие применимость первого закона термодинамики к живым системам. Дальнейшее развитие этого направления привело к описанию Гельмгольцем тепловых эквивалентов пищи. Наибольший вклад в этот процесс внес австрийский биофизик И.Пригожин, доказавший применимость второго закона термодинамики к биологическим системам и положивший начало учению о термодинамике открытых неравновесных систем.

Кинетика биологических процессов – пожалуй, наиболее близкая к физике и химии область биофизики. Скорость и закономерности протекания реакций в живых системах мало отличаются от остальных. Эксклюзивным предметом является– учение о ферментах, о кинетике ферментативных реакций и способах регуляции ферментативной активности, описанная Михаэлисом и Ментен.

Фотобиология , или квантовая биофизика – изучает взаимодействие излучений с живыми организмами. Видимый свет играет исключительно важную роль в биологии как источник энергии (фотосинтез) и информации (зрение). Здесь нужно отметить большой вклад русского ученого М.Ломоносова, предложившего трехкомпонентную теорию цветного зрения, нашедшую затем свое развитие в работах Юнга и Гельмгольца («Физиологическая оптика», 1867). Они описали оптическую систему глаза, явление аккомодации и изобрели «глазное зеркало» – офтальмоскоп, до сегодняшнего дня используемый при исследовании сетчатки.

Молекулярная биофизика – раздел, тесно прилегающий к физической химии и изучающий закономерности образования и функционирования биомакромолекул. Этот раздел начал бурно развиваться лишь во второй половине XX века, так как требует сложного оборудования для проведения исследований. Здесь следует отметить работы Поллинга и Кори по изучению структуры молекул белка, Уотсона и Крика - по изучению молекулы ДНК.

Раздел II. Биофизика клетки . Предметом данного раздела являются принципы организации и функционирования живой клетки и ее фрагментов, биологических мембран.

Этот раздел биофизики стал развиваться после появления клеточной теории Шванна. Были описаны структура и функция клеточных мембран (Робертсон, Синджер и Николсон), сформулированы представления об избирательной проницаемости мембран (В.Пфеффер и Х.деФриз, Овертон), учение об ионных каналах (Эйзенман, Муллинз, Хилле).

Эксперименты Э. Дюбуа-Реймона и теория В. Оствальда о трансмембранной разности потенциалов положили начало учению о биологическом электричестве, о возбудимых тканях и привели к пониманию закономерностей функционирования нервных и мышечных клеток.

Механизмы передачи информации в клетках, учение о первичных и вторичных посредниках и внутриклеточных сигнальных системах – одно из активно развивающихся направлений современной биофизики. Ионы кальция, циклические нуклеотиды, продукты гидролиза мембранных фосфоинозитидов, простагландины, оксид азота – перечень молекул, передающих информацию от мембраны внутрь клетки и между клетками, постоянно пополняется.

Раздел III. Биофизика сложных систем. Естественным этапом в развитии биофизики явился переход к описанию сложных биологических систем. Начав с исследования отдельных тканей и органов, сегодня биофизика анализирует процессы, протекающие на уровне целого организма, надорганизменных систем (популяций и экологических сообществ), биосферы в целом. Делаются попытки использовать биофизические подходы к анализу социальных процессов.

Познание функций человека - одна из труднейших задач. Развитие науки на первых этапах происходит - дифференциация дисциплин, направленных на глубокое изучение тех или иных проблем. На первом этапе мы пытаемся познать определенную часть и когда это удается сделать возникает другая задача - как составить общее представления. Возникают научные дисциплины на стыке первоначальных специальностей. Это относится и к биофизике, которая появилась на стыке физиологии, физики, физической химии и открыла новые возможности в понимании биологических процессов

Биофизика - наука, изучающая физические и физико-химические процессы на разных уровнях живой материи (молекулярном, клеточном, органном, целого организма), а также закономерности и механизмы воздействия физических факторов внешней среды на живую материю.

Выделяют-

  • молекулярная биофизика - кинетики и термодинамика процессов
  • биофизика клеток - изучение структуры клеток и физико-химические проявления - проницаемость, образование биопотенциалов
  • биофизика органов чувств - физико-химические механизмы рецепции, трансформацию энергии, кодирование информации ив рецепторах.
  • Биофизика сложных системы - процессы регулирования и саморегулирования и термодинамические особенности этих процессов
  • Биофизика воздействия внешних факторов - исследует влияние на организм ионизирующей радиации, ультразвука, вибрации, воздействия света

Задачи биофизика

  1. Установление закономерностей дивой природы путем изучения физических и химических явлений в организме
  2. Изучение механизмов воздействия физических факторов на организм

Эйлер(1707-1783) - законы теории гидродинамики, для объяснения движения крови по сосудам

Лавуазье (1780) - изучал обмен энергии в организме

Гальвани(1786) - основоположник учения о биопотенциалах, о животном электричестве

Гельмгольц(1821)

Рентген - пытался объяснить механизмы мышечного сокращения с позиции пьезо - эффектов

Аррениус - законы классической кинетики для объяснения биологических процессов

Ломоносов - закон сохранения и превращения энергии

Сеченов - изучал транспорт газа в крови

Лазарев - основоположник отечественной биофизической школы

Полинг - открытие пространственной структуры белка

Уотсон и Крик - открытие двойной структуры ДНК

Ходжкин, Хаксли, Катц - открытие ионной природы биоэлектрических явлений

Пригожин -теория термодинамики необратимых процессов

Эйген - теория гиперциклов, как основа эволюции

Сакман, Неер - установили молекулярную структуру ионных каналов

Биофизика становилась в связи с развитием медицины, т.к. там использовались методы физического воздействия на организма.

Развивалась биология и было необходимо проникнуть в тайны биологических процессов, протекающих на молекулярном уровне

Потребность промышленности, развитие которой привело к действию ан организм различных физически факторов - радиоактивное излучение, вибрации, невесомость, перегрузки

Методы биофизических исследований

  • Рентгеноструктурный анализ - исследование атомной структуры вещества, с помощью дифракции рентгеновских лучей. По дифракционной картине устанавливают распределение электронной плотности вещества, а уже по ней можно определить, какие атомы содержатся в веществе и как они расположены. Исследование кристаллических структур, жидкостей и белковых молекул.
  • Колоночная хроматография - различное распределение и анализ смесей между 2 фазами - подвижной и неподвижной. Она может быть связана с различной степенью вещества абсорбции или к различной степени ионного обмена. Может быть газовой, либо жидкостной. Распределение веществ используют в капиллярах - капилярная, либо в трубках, заполненных сорбентом - колончатая. Можно проводить на бумаге, пластинках
  • Спектральный анализ - качественное и количественное определение вещества по оптическим спектрам. Вещество определяют либо по спектру испускания - эмиссионный спектральный анализ или по спектру поглощения - абсорбционный. Содержание вещества определяется по относительной или абсолютной толщине линий в спектре. Также относят радиоспектроскопию - электронный парамагнитный резонанс и ядерно-магнитный резонанс.
  • Изотопная индикация
  • Электронная микроскопия
  • Ультрафиолетовая микроскопия - исследование в УФ лучах биологических объектов повышает контрастность изображения, особенно внутриклеточных структур и она позволяет исследовать иные клетки без предварительной окраски и фиксации препарата

Одним из важнейших условий существования является адекватное приспособлений функций, органов и тканей, систем к среде обитания. Происходит постоянное уравновешивание организма и среды. В этих процессах основной процесс - регуляция и управление физиологическими функциями.

Общие законы реализации, управления и переработки информации в разных системах изучаются наукой кибернетикой(кибернетика - искусство управления) Законы управления являются общими как у человека, так и у технических устройств. Возникновение кибернетики было подготовлено разработкой теорией автоматического регулирования, развитием радиоэлектроники, созданием теории информации.

Эта работа была изложена Шенноном(1948) в «Математическая теория связи»

Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. Кибернетика изучает те сигналы и факторы, которые приводят к определенным процессам управления.

Имеет большое значения для медицины. Анализ биологических процессов позволяет качественно и количественно изучить механизмы регулирования. Информационные процессы управления и регулирования являются определяющими в организме, т.е. являются первичными, на основе которых происходят все процессы.

Системы - организованный комплекс элементов, связанных друг с другом и выполняющих определенные функции в соответствии с программой всей системы. Элементами мозга будут являться нейроны. Элементы коллектива - люди, входящие в него. Только толпа не является кибернетической системой.

Программа - последовательность изменений системы в пространстве и времени, которые могут быть заложены в структуре смой системы или поступить в нее извне.

Связь - процесс взаимодействия элементов друг с другом, при котором происходит обмен веществом, энергией, информацией.

Сообщения бывают непрерывными и дискретными.

Непрерывное имеют характер непрерывно меняющейся величины(артериальное давление, температура, напряжение мышц, музыкальные мелодии).

Дискретное - состоят из отдельных, отличающихся друг от друга ступеней или градаций(порции медиаторов, азотистое основание ДНК, точки и тире азбуки Морзе)

Важен также процесс кодирования информации. Кодируется нервными импульсами, для восприятия информации нервными центрами. Элементы кода - символы и позиции. Символы являются безразмерными величинами, которые отличают что либо(буквы алфавита, математические знаки, нервный импульс, молекулы пахучих веществ, а позиции определяет пространственное и временное расположение символов).

Код информации содержит такую же информацию, как и исходное сообщение. Это явление изоморфности. Кодовый сигнал обладает очень малой энергетической величиной. Поступление информации оценивается по наличию или отсутствию сигнала.

Сообщение и информация - это не одно и тоже, ибо по теории информации

Информация - мера того количества неопределенности, которая устраняется после получения сообщения.

Возможность наступления события - априорная информация .

Та вероятность события после получения информации - апостериорная информация.

Информативность сообщения будет больше, если полученные сведенья повышают апостериорную вероятность.

Свойства информации.

  1. Информация имеет смысл только при наличии ее приемников(потребителя) - «если в комнате стоит телевизор, и в ней никого нет»
  2. Наличие сигнала не обязательно говорит о том, что предается информации, т.к. есть сообщения, которые не несут ничего нового, для потребителя.
  3. Информация может предаваться как на сознательном, так и на подсознательном уровнях.
  4. Если событие достоверно(т.е. его вероятность Р=1), сообщение о том, что оно произошло не несет никакой информации для потребителя
  5. Сообщение о событии, вероятность которого Р < 1, содержит в себе информацию, и тем большую, чем меньше вероятность события, которого произошло.

Дезинформация - отрицательное значение информации.

Мера неопределенности событий - энтропия (H)

Если log2 N=1, тогда N=2

Единица информации - бит (двойничная единица информации)

H=lg N (хартли)

1 хартли - количество информации, необходимое для выбора одной из десяти равновероятных возможностей. 1 хартли = 3,3 бит

Регулятор может работать по возмещению, когда воздействие на организм является компенсирующим действием регулятора, что приводит к нормализации функции

Управление направлено на запуск физиологических функций, на их коррекцию и на согласование процессов.

Наиболее древний - гуморальный механизм регуляции.

Нервный механизм.

Нервно-гуморальный механизм.

Развитие механизмов регуляции приводит к тому, что животные способны к движению и могут уходить из неблагоприятной среды в отличие от растений.

Форпостный механизм (у человека) - в форме условных рефлексов. На сигнальные раздражители мы можем осуществлять меры воздействия на окружающую среду.

БИОФИЗИКА (биологическая физика), наука о физических и физико-химических механизмах взаимодействий, лежащих в основе биологических процессов, протекающих на разных уровнях организации живой материи - молекулярном, клеточном, организменном и популяционном. Становление и развитие биофизики проходило при тесном взаимодействии биологии с физикой, физической химией и математикой. Согласно классификации, принятой Международным союзом чистой и прикладной биофизики (1961) и отражающей основные объекты и области биофизических исследований, биофизика включает в себя следующие разделы: молекулярную биофизику, в задачу которой входит исследование физических и физико-химических свойств макромолекул и молекулярных комплексов; биофизику клетки, изучающую физико-химические основы функции клетки, связь молекулярной структуры мембран и клеточных органелл с их функциями, закономерности координации клеточных процессов, их механические и электрические свойства, энергетику и термодинамику клеточных процессов; биофизику сложных систем, к которым относят отдельные органеллы, целые организмы и популяции; биофизику процессов управления и регуляции, которая занимается исследованием и моделированием принципов управления в биологических системах. В рамках биофизики выделяют также биомеханику, биологическую оптику, биомагнетизм, биологическую термодинамику. К биофизике относят и области науки, изучающие механизмы воздействий на биологические системы различных физических факторов (свет, ионизирующие излучения, электромагнитные поля и др.).

История становления биофизики. Начало изучения физических свойств биологических объектов связывают с работами Г. Галилея и Р. Декарта (17 век), заложившими основы механики, на принципах которой и делались первые попытки объяснить некоторые процессы жизнедеятельности. Р. Декарт, например, считал, что организм человека подобен сложной машине, состоящей из тех же элементов, что и тела неорганического происхождения. Дж. Борелли применил принципы механики в описании механизмов движений животных. В 1628 году У. Гарвей на основе законов гидравлики описал механизм кровообращения. В 18 веке важное значение в познании физико-химических явлений, протекающих в живых организмах, имели открытия в области физики, совершенствование её математического аппарата. Использование физических подходов дало толчок к введению в биологию экспериментальных методов и идей точных наук. Л. Эйлер математически описал движение крови по сосудам. М. В. Ломоносов высказал ряд общих суждений о природе вкусовых и зрительных ощущений, выдвинул одну из первых теорий цветового зрения. А. Лавуазье и П. Лаплас показали единство законов химии неорганических и органических тел, установив, что процесс дыхания аналогичен медленному горению и является источником тепла для живых организмов. Творческая дискуссия между А. Вольтой и Л. Гальваны по поводу открытого последним «живого электричества» легла в основу электрофизиологии.

В 19 веке развитие биологии сопровождалось обогащением знаний о физико-химических свойствах биологических структур и процессов. Огромное значение имело создание электролитической теории растворов С. Аррениусом, ионной теории биоэлектрических явлений В. Нернстом. Были получены основные представления о природе и роли потенциалов действия в механизме возникновения и распространения возбуждения по нерву (Г. Гельмгольц, Э. Дюбуа-Реймон и Ю. Бернштейн, Германия); значение осмотических и электрических явлений в жизни клеток и тканей было выяснено благодаря работам Ж. Лё6а (США), В. Нернста и Р. Герера (Германия). Всё это позволило Э. Дюбуа-Реймону сделать вывод о том, что в материальных частицах организмов не обнаруживается никаких новых сил, которые не могли бы действовать вне их. Такая принципиальная позиция положила конец объяснениям процессов жизнедеятельности действием каких-то особых «живых факторов, не поддающихся физическим измерениям».

Значительный вклад в развитие биофизики внесли отечественные учёные. И. М. Сеченов исследовал закономерности растворения газов в крови, биомеханику движений. Конденсаторная теория возбуждения нервных тканей, основанная на неодинаковой подвижности ионов, была предложена В. Ю. Чаговцом. К. А. Тимирязев определил фотосинтетическую активность отдельных участков солнечного спектра, установив количественную закономерность между скоростью процесса фотосинтеза и поглощением хлорофиллом листьев света разного спектрального состава. Идеи и методы физики и физической химии использовались при исследовании движения, органов слуха и зрения, фотосинтеза, механизма генерации электродвижущей силы в нерве и мышце, значения ионной среды для жизнедеятельности клеток и тканей. В 1905-15 годах Н. К. Кольцов изучал роль физико-химических факторов (поверхностного натяжения, концентрации водородных ионов и других катионов) в жизни клетки. П. П. Лазареву принадлежит заслуга в развитии ионной теории возбуждения (1916), изучении кинетики фотохимических реакций. Он создал первую советскую школу биофизиков, объединил вокруг себя большую группу крупных учёных (в том числе С. И. Вавилов, С. В. Кравков, В. В. Шулейкин, С. В. Дерягин и др.). В 1919 году им был создан в Москве Институт биологической физики Наркомздрава, где велись работы по ионной теории возбуждения, изучению кинетики реакций, идущих под действием света, исследовались спектры поглощения и флуоресценции биологических объектов, а также процессы первичного воздействия на организм различных факторов внешней среды. Открытие А. Г. Гурвичем (1923) митогенетических лучей, стимулирующих деление клеток, получило развитие в работах Г. М. Франка. Огромное влияние на развитие биофизики в СССР оказали книги В. И. Вернадского («Биосфера», 1926), Э. С. Бауэра («Теоретическая биология», 1935), Д. Л. Рубинштейна («Физико-химические основы биологии», 1932), Н. К. Кольцова («Организация клетки», 1936), Д. Н. Насонова и В. Я. Александрова («Реакция живого вещества на внешние воздействия», 1940) и др. Во 2-й половине 20 века успехи в биофизике непосредственно связаны с развитием и совершенствованием физических и химических методов исследований и теоретических подходов, применением электронно-вычислительной техники. Широкое освоение атомной энергии стимулировало интерес к исследованиям в области радиобиологии.

Современные направления биофизики . В современной биофизике можно выделить 2 основных направления: теоретическую биофизику (решает общие проблемы термодинамики биологических систем, динамической организации и регуляции биологических процессов, изучает физическую природу взаимодействий, определяющих структуру, устойчивость и внутримолекулярную динамическую подвижность макромолекул и их комплексов, трансформацию в них энергии) и биофизику конкретных биологических процессов, анализ которых проводится на основе общетеоретических представлений. Основная тенденция связана с проникновением в молекулярные механизмы, лежащие в основе биологических явлений на разных уровнях организации живого. К достижениям биофизики, имеющим общебиологическое значение, можно отнести понимание термодинамических свойств организмов и клеток как открытых систем, формулировку на основе 2-го закона термодинамики критериев эволюции открытой системы к устойчивому состоянию (И. Р. Пригожин); раскрытие механизмов колебательных процессов на уровне популяций, ферментативных реакций. Исходя из теории автоволновых процессов в активных средах, установлены условия самопроизвольного возникновения диссипативных структур в гомогенных открытых системах. На этом основании строятся модели процессов морфогенеза, формирования регулярных структур при росте бактериальных культур, распространения нервного импульса и нервного возбуждения в нейронных сетях.

Развивающаяся область теоретической биофизики - изучение возникновения и природы биологической информации и её связи с энтропией, условий хаотизации и образования фрактальных самоподобных структур в сложных биологических системах. Анализ конкретных биологических процессов в биофизике основан на данных исследований физико-химических свойств биополимеров (белков и нуклеиновых кислот), их строения, механизмов самосборки внутримолекулярной подвижности и т. д. Большое значение имеет использование современных экспериментальных методов, и прежде всего рентгеноструктурного анализа, радиоспектроскопии (ЯМР, ЭПР), спектрофотометрии, электронной туннельной микроскопии, атомной силовой микроскопии, лазерной спектроскопии. Они дают возможность получать информацию о механизмах молекулярных превращений, не нарушая целостности биологических объектов. Так, при рентгеноструктурном анализе белка в 1954 году Дж. Кендрю и М. Перуц предложили способ расчёта расположения атомов в молекуле, что позволило им установить пространственную структуру миоглобина и гемоглобина (к началу 21 века установлена структура около 1000 белков). Расшифровка пространственной структуры ферментов и их активного центра позволяет понять природу молекулярных механизмов ферментативного катализа, планировать на этой основе создание новых лекарственных средств. В области теоретической молекулярной биофизики представления об электронно-конформационных взаимодействиях (Л. А. Блюменфельд, М. В. Волькенштейн), стохастических свойствах белка (О. Б. Птицын) составляют основу понимания принципов функционирования биологических макромолекул.

Традиционно биофизика изучает свойства биологических мембран, их молекулярную организацию, конформационную подвижность белковых и липидных компонентов, устойчивость к действию температуры, перекисному окислению липидов, выяснению их проницаемости для неэлектролитов и различных ионов, молекулярное строение и механизмы функционирования ионных каналов, межклеточные взаимодействия. Большое внимание уделяется механизмам преобразования энергии (смотри Биоэнергетика) в структурах, где они сопряжены с переносом электронов и с трансформацией энергии электронного возбуждения. Раскрыта роль свободных радикалов в живых системах и их значение в поражающем действии ионизирующей радиации (Н. М. Эмануэль, Б. Н. Тарусов). Один из разделов биофизики, пограничных с биохимией, - механохимия, изучает механизмы взаимопревращений химической и механической энергий, связанные с сокращением мышц, движением ресничек и жгутиков, перемещением органелл и протоплазмы в клетках. Важное место занимает квантовая биофизика, изучающая первичные процессы взаимодействия биологических структур с квантами света (фотосинтез, зрение, воздействие на кожные покровы и так далее), механизмы биолюминесценции и фототропных реакций, действия ультрафиолетового и видимого света (фотодинамические эффекты) на биологические объекты. Ещё в 1940-х годах А. Н. Теренин раскрыл роль триплетных состояний в фотохимических и ряде фотобиологических процессов. Позднее А. А. Красновский показал способность возбуждённого светом хлорофилла к окислительно-восстановительным превращениям, лежащим в основе первичных процессов фотосинтеза. Современные методы лазерной спектроскопии дают непосредственную информацию о кинетике фотоиндуцированных электронных переходов, колебаниях атомных групп в частотном диапазоне 10 -15 -10 -6 с -1 и более.

Достижения в биофизике в большой степени связаны с развитием медицины и экологии. Медицинская биофизика занимается выявлением в организме (клетке) на молекулярном уровне начальных стадий патологических изменений. Ранняя диагностика заболеваний основана на регистрации спектральных изменений, биолюминесценции, электрической проводимости образцов крови и тканей, сопровождающих заболевание (например, по уровню хемилюминесценции можно судить о характере перекисного окисления липидов). Экологическая биофизика анализирует влияние абиотических факторов (температура, свет, электромагнитные поля, антропогенные загрязнения и др.) на организмы, их жизнеспособность и устойчивость. Важнейшей задачей экологической биофизики является развитие экспресс-методов для оценки состояния экосистем.

Научные учреждения, общества, периодические издания . В России исследования по биофизике проводятся в ряде научно-исследовательских институтов и вузов. Одно из ведущих мест принадлежит научному центру в г. Пущино, где в 1952 году был организован Институт биологической физики Академии Наук СССР, который позднее разделился на Институт биофизики клетки и Институт теоретической и экспериментальной биофизики. Биофизика активно развивается в Институте биофизики Министерства здравоохранения Российской Федерации, Институте молекулярной биологии и Институте белка РАН, Институте биофизики СО РАН, в университетах Москвы, Санкт-Петербурга и Воронежа, в Московском физико-техническом и Московском инженерно-физическом институтах и др. Параллельно с развитием исследований шло формирование базы для подготовки специалистов в области биофизики. Первая в СССР кафедра биофизики была организована в 1953 году на биолого-почвенном (Б. Н. Тарусов), в 1959 - на физическом факультете (Л. А. Блюменфельд) МГУ, а затем в ряде других вузов страны. Курс биофизики читается во всех университетах страны. Биофизические исследования проводятся в институтах и университетах многих стран мира. Международные конгрессы, организуемые Международным союзом теоретической и прикладной биофизики, проводятся регулярно - каждые 3 года. Общества биофизиков существуют в США, Великобритании и ряде других стран. В России Научный совет по биофизике при РАН координирует научную работу, осуществляет международные связи. Секция биофизики имеется при Московском обществе испытателей природы. Среди периодических изданий, в которых публикуются труды по биофизике: «Биофизика» (М., 1956); «Молекулярная биология» (М., 1967); «Радиобиология» (М., 1961); «Биологические мембраны» (М., 1984); «Advances in Biological and Medical Physics» (N. Y., 1948); «Biochimica et Biophysica Acta» (N. Y.; Amst., 1947); «Biophysical Journal» (N.Y., 1960); «Bulletin of Mathematical Biophysics» (Chi., 1939); «Journal of Cell Biology» (N. Y., 1962); «Journal of Molecular Biology» (N. Y.; L., 1959); «Journal of Ultrastructure Research» (N. Y.; L., 1957);«Progress in Biophysics and Biophysical Chemistry» (N. Y., 1950); «Progress in Biophysics and Molecular Biology» (Oxf., 1963) и др.

Лит.: Байер В. Биофизика. М., 1962; Аккерман Ю. Биофизика. М., 1964; Биофизика. М., 1968; Маркин В. С., Пастушенко В. Ф., Чизмаджев Ю.А. Теория возбудимых сред. М., 1974; Жаботинский А. М. Концентрационные автоколебания. М., 1974; Блюменфельд Л. А. Проблемы биологической физики. 2-е изд. М., 1977; Иваницкий Г. Р., Кринский В. И., Сельков Е. Е. Математическая биофизика клетки. М., 1978; Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М., 1979; Хакен Г. Синергетика. М., 1980; Кантор Ч., Шаммел П. Биофизическая химия. 2-е изд. М., 1984; Романовский Ю. М., Степанова Н. В., Чернавский Д. С. Математическая биофизика. М., 1984; Рубин А. Б. Термодинамика биологических процессов. М., 1984; он же. Биофизика. М., 1999-2000. Т. 1-2; Рубин А. Б., Пытьева Н. Ф., Ризниченко Г. Ю. Кинетика биологических процессов. 2-е изд. М., 1987; Волькенштейн М. В. Биофизика. 2-е изд. М., 1988; Финкельштейн А. В., Птицын О. Б. Физика белка. М., 2002; Аксенов С. И. Вода и ее роль в регуляции биологических процессов. М., 2004.