Иммуноглобулины. Вопросы к занятию Клетка синтезирующая иммуноглобулины

Иммуноглобулины

Антитела (иммуноглобулины, ИГ, Ig) - это белки , относящиеся к подклассу гамма-глобулинов , находящиеся в крови , слюне, молоке и других биологических жидкостях позвоночных животных. Иммуноглобулины синтезируются В-лимфоцитами в ответ на чужеродные вещества определенной структуры - антигены . Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов - например, бактерий и вирусов. Антитела выполняют две функции: антиген-связывающую функцию и эффекторную (например запуск классической схемы активации комплемента и связывание с клетками), являются важнейшим фактором специфического гуморального иммунитета , состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов иммуноглобулинов - IgG, IgA, IgM, IgD, IgE, различающиеся между собой по строению и аминокислотному составу тяжелых цепей.

История изучения

Самое первое антитело было обнаружено Берингом и Китазато в 1890 году, однако в это время о природе обнаруженного столбнячного антитоксина, кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тизелиуса и Кабата, начинается изучение молекулярной природы антител. Авторы использовали метод электрофореза и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном, который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

Строение антител

Общий план строения иммуноглобулинов: 1) Fc; 3) тяжелая цепь; 4) легкая цепь; 5) антиген-связывающийся участок; 6) шарнирный участок

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеидами , имеющими сложное строение. Состоят из двух тяжелых цепей (H-цепи, в свою очередь состоящие из VH, CH1, шарнира, CH2 and CH3 доменов) и из двух лёгких цепей (L-цепей, состоящих из VL и CL доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fc (от fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA) так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε-и μ- цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Классификация по тяжелым цепям

Различают пять классов (ещё называемых изотипами ) антител, различающихся по строению и функции. Основная структурная единица всех антител состоит из двух одинаковых тяжелых цепей и двух легких цепей, соединенными дисульфидными мостиками. Изотипы антител отличаются по строению тяжелой цепи (IgG содержат две γ-цепи, IgA- две α-цепи, IgM- две μ- цепи, IgD- две δ-цепи, IgE- две ε-цепи), олигомерному строению, местом синтеза.

  • IgG является основным иммуноглобулином сыворотки здорового человека (составляет 70-75 % всей фракции иммуноглобулинов), наиболее активен во вторичном иммунном ответе и антитоксическом иммунитете. Благодаря малым размерам (коэффициент седиментации 7S, молекулярная масса 146 кДа) является единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивая иммунитет плода и новорожденного.
  • IgM представляют собой пентамер основной четырехцепочечной единицы, содержащей две μ- цепи. Появляются при первичном иммунном ответе на неизвестный антиген, составляют до 10 % фракции иммуноглобулинов. Являются наиболее крупными иммуноглобулинами (970 кДа).
  • IgA сывороточный IgA составляет 15-20 % всей фракции иммуноглобулинов, при этом 80 % молекул IgA представлено в мономерной форме у человека. Секреторный IgA представлен в димерной форме в комплексе секреторным компонентом, содержится в серозно-слизистых секретах (например в слюне , молозиве , молоке , отделяемом слизистой оболочки мочеполовой и респираторной системы).
  • IgD составляет менее одного процента фракции иммуноглобулинов плазмы, содержится в основном на мембране некоторых В-лимфоцитов. Функции до конца не выяснены, предположительно является антигенным рецептором для В-лимфоцитов, еще не представлявшихся антигену.
  • IgE- связан с мембранами базофиллов и тучных клеток, в свободном виде в плазме почти отсутствует. Связан с аллергическими реакциями.

Специфичность антител

Клонально-селекционная теория имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка, полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью вариабельных областей Ig.

Клонально-селеционная теория :

  1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
  2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
  3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
  4. Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

Вариабельность антител

Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 0,1 миллиарда вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжелых цепей, так и легких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

  • Изотипическая вариабельность - проявляется в наличии классов антител(изотипов), различающихся по строению тяжелых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
  • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов- является генетически детерминированым отличием данного организма от другого;
  • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжелой и легкой цепи, непосредственно контактирующих с антигеном.

Контроль пролиферации

Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит ее ингибитором. Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM , усиливает иммунный ответ.Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

  • А. Ройт, Дж. Брюсстофф, Д. Мейл. Иммунология- М.: Мир, 2000 - ISBN 5-03-003362-9
  • Иммунология в 3 томах / Под. ред. У. Пола.- М.:Мир, 1988
  • В. Г. Галактионов. Иммунология- М.: Изд. МГУ, 1998 - ISBN 5-211-03717-0

См. также

  • Абзимы - каталитически активные антитела

Wikimedia Foundation . 2010 .

Смотреть что такое "Иммуноглобулины" в других словарях:

    Антитела, сложные белки (глико–протеиды), которые специфически связываются с чужеродными веществами – антигенами; главные эффекторные молекулы гуморального иммунитета. Содержатся вглобулиновой фракции сыворотки крови, в лимфе, в слюне и на… … Словарь микробиологии

    Современная энциклопедия

    Белки (гликопротеиды), обладающие активностью антител. Содержатся главным образом в глобулиновой фракции плазмы (сыворотки) крови позвоночных животных и человека. Синтезируются плазматическими клетками и участвуют в создании иммунитета. Препараты … Большой Энциклопедический словарь

    Ig, антитела, сложные белки (гликопротеиды), к рые специфически связываются с чужеродными веществами антигенами; гл. эффекторные молекулы гуморального иммунитета. Содержатся в глобулиновой фракции сыворотки крови, в лимфе (циркулирующие антитела) … Биологический энциклопедический словарь

    иммуноглобулины - Ig Препараты для пассивной иммунизации, содержащие антитела. Ранее известны как гамма глобулины. [Англо русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.] Тематики вакцинология,… … Справочник технического переводчика

    Иммуноглобулины - (от латинского immunis свободный от чего либо и globus шар), глобулярные белки позвоночных животных и человека, обладающие активностью антител; вырабатываются В лимфоцитами. Содержатся главным образом в плазме крови и других жидкостях организма.… … Иллюстрированный энциклопедический словарь

    - (Ig), группа близких по хим. природе и св вам глобулярных белков позвоночных животных и человека, к рые обычно обладают св вами антител, т. е. специфич. способностью соединяться с антигеном, к рый стимулирует их образование. И. продуцируются В… … Химическая энциклопедия

    Ов; мн. (ед. иммуноглобулин, а; м.). Белки, содержащиеся в плазме крови, обладающие активностью антител и способствующие появлению иммунитета у позвоночных животных и человека. * * * иммуноглобулины белки (гликопротеиды), обладающие активностью… … Энциклопедический словарь

    иммуноглобулины - (Ig, от лат. immunis — свободный от чего либо и globus — шар), глобулярные белки позвоночных, продуцируемые лимфоцитами и обладающие, как правило, активностью антител. Понятия «И.» и «гамма глобулины» нельзя употреблять как синонимы,… … Сельское хозяйство. Большой энциклопедический словарь

    - (иммуно + глобулины; син. глобулины иммунные) глобулины человека и животных, выполняющие функцию антител … Большой медицинский словарь

3090 0

Функции Т-клеток

Одной из ключевых эффекторных функций активированной СD4+-Т-клетки является синтез антиген неспецифичных растворимых факторов - цитокинов. Выделяемые СD4+-Т-клетками цитокины влияют на функции множества типов клеток, в том числе СD8+-Т-клеток, В-клеток, миелоидных клеток (таких как макрофаги и эозинофилы), а также на дифференцировку костномозговых клеток-предшественников. По этой причине потеря CD4+-T-клеток при СПИДе является такой разрушительной.

Свойства цитокинов, которые продуцируют Т-лимфоциты и другие клетки. Многие важные функции Т-клеток будут обсуждаться в следующих главах, посвященных клеточно-опосредованному иммунитету и трансплантациям. Сконцентрируемся на гетерогенности цитокинов, которые образуют СD4+-Т-клетки, а затем опишем важные аспекты взаимодействия CD4-Т-лимфоцитов и В-клеток и, наконец, обсудим функции CD8+-T- клеток.

Субпопуляции СD4+-Т-клеток, отличающиеся по выделяемым цитокинам

Наивная СD4+-Т-клетка после стимуляции пептидом, связанным с молекулой МНС, начинает синтезировать IL-2. Активированная СD4+-Т-клетка может дифференцироваться дальше, чтобы синтезировать более широкий набор цитокинов. Однако после антигенной стимуляции не все СD4+-Т-клетки синтезируют одинаковые цитокины. Исследования функционирования Т-клеток у мыши и человека показали, что активированные антигеном СD4+-Т-клетки могут быть разделены по меньшей мере на три субпопуляции на основании продукции различных цитокинов: ТH0, Тн1 и Тн2. Как показано на рис. 10.5, Тн1 и Тн2 образуются в результате вызываемой антигеном дифференцировки клеток Тн0, которые синтезируют IL-2, IFNγ и IL-4.

Тн1-клетки, которые синтезируют IL-2, IFNγ и TNFβ, и Тн2-клетки, синтезирующие IL-4, IL-5, IL-10 и IL-13, играют разные важные роли в иммунном ответе. Поскольку разные цитокины взаимодействуют с различными клетками-мишенями, главным следствием продукции уникальных наборов цитокинов Тн1- и Тн2-клетками является то, что каждая субпопуляция обладает разной эффекторной функцией. Так, цитокины, синтезируемые Тн1-клетками, активируют клетки, вовлеченные в клеточно-опосредованный иммунитет: СD8+-Т-клетки, NK-клетки и макрофаги.

Кроме того, цитокины, выделяемые Тн1-клетками, индуцируют В-клетки к синтезу таких изотипов Ig, как IgG2, которые усиливают фагоцитоз возбудителей фагоцитирующими клетками. Напротив, цитокины, синтезируемые Тн2-клетками, переключают В-клетки на продукцию антител класса IgE и активацию эозинофилов; такая модель характерна для ответа на аллергены и гельминты.

Пока результаты попыток охарактеризовать поверхностные молекулы, по которым можно было бы отличать субпопуляции Тн1- и Тн2-клеток, не дали однозначных результатов, а сами эти исследования интенсивно продолжаются. Результаты некоторых недавних исследований показали, что, возможно, Тн1- и Тн2-клетки экспрессируют различные молекулы, используемые при межклеточном взаимодействии в процессе хоминга, в том числе различные хемокиновые рецепторы; однако для подтверждения или изменения этих выводов необходимы дальнейшие исследования.

Рис. 10. 5. Цитокиновый контроль образования Тн1- и Тн2-субпопуляций CD4+-T-клеток. Волнистые линии означают угнетение

Тн1-клетки развиваются, если в момент антигенной стимуляции присутствует IL-12. Как показано в начале этой главы, IL-12 и другие провоспалительные цитокины образуются дендритными клетками и другими АПК в самом начале ответа на такие возбудители, как бактерии и вирусы. Эти цитокины также синтезируются другими клетками врожденного иммунитета, в том числе NK-клетками. Напротив, присутствие IL-4 в начале иммунного ответа приводит к дифференцировке в сторону Тн2-клеток. Источник этого IL-4 до сих пор не ясен; он может образовываться или активированными СD4+-Т-клетками, или тучными клетками. Предполагается, что и другие факторы, такие как концентрация и путь введения антигена, степень аффинности взаимодействия между комплексом пептид-МНС и TCR и природа АПК, участвовавшей в ответе, могут влиять на то, какая субпопуляция СD4+-Т-клеток разовьется.

На рис. 10.5 также показано, что цитокины, выделяемые Тн1, могут угнетать функции Тн2, и наоборот. Например, IFNγ, образуемый Тн1-клетками, угнетает размножение Тн2-клеток, a IL-4 и 1L-10, образуемые Тн2-клетками, угнетают размножение Тн1-клеток. В табл. 10.1 представлены две важные характеристики субпопуляций Тн1 и Тн2 СD4+-T-клеток. Во-первых, субпопуляции синтезируют несколько общих цитокинов, в том числе IL-3 и гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ КСФ) . Во-вторых, субпопуляции Тн1 и Тн2 CD4+-T-клеток больше различаются у мышей, чем у человека.

Таблица 10.1. Синтез цитокинов субпопуляциями Тн1 и Тн2 СD4+-Т-клеток

Цитокин


Рис. 10.6. В-клетки захватывают антиген путем взаимодействия с молекулами lg, процессируют его и презентируют CD4+-T-клеткам антиген, связанный с молекулами МНС II класса

Т-В-кооперация

Почти все белки являются тимусзависимыми антигенами. Их называют так потому, что для синтеза антител им необходима «помощь» или кооперация СD4+-Т-клеток с В-клетками. По этой причине группу СD4+-Т-клеток, которые участвуют в иммунном ответе, помогая продуцировать антитела на тимусзависимые антигены, называют Т-клетками-хелперами (Тн). Т-клетка-хелпер и В-клетка, которые взаимодействуют в ответе на конкретный тимусзависимый антиген, должны быть специфичны к нему. Тн-клетка и В-клетка обычно отвечают на разные эпитопы антигена, но для эффективной кооперации Т-хелпера и В-клетки эти эпитопы должны быть частью одной белковой последовательности. По этой причине кооперацию Т- и В-лимфоцитов при ответе на тимусзависимый антиген также называют связанным распознаванием.

Ключевые стадии Т-В-клеточной кооперации, приводящие к синтезу антител, представлены на рис. 10.6 и 10.7. На рис. 10.6 показано, как В-клетка выступает в качестве АПК для СD4+-Т-клетки. Вначале В-клетка, экспрессирующая иммуноглобулин, специфичный к конкретному белковому антигену, захватывает антиген путем связывания его с Ig на мембране клетки. После этого комплекс антигена с Ig перемещается внутрь клетки и антиген подвергается процессингу в вакуолях с кислым содержимым. Некоторые пептиды, образованные при разрушении антигена, избирательно связываются с молекулами МНС II класса, также присутствующими в этих вакуолях с кислым содержимым. Комплексы пептид -МНС II класса транспортируются к поверхности В-клетки, где взаимодействуют с СD4+-Т-клеткой, обладающей подходящим TCR (вверху на рис. 10.7).

В дополнение к комплексу пептид-МНС, презентируемому В-клеткой для TCR подходящей Т-клетки, на поверхностях Т- и В-лимфоцитов взаимодействуют еще несколько пар молекул (см. рис. 10.7). Эти взаимодействия необходимы для взаимной активации Т- и В-клеток; в результате Т-клетка синтезирует цитокины, а В-клетка - антитела. Пары адгезионных молекул CD11a/CD18- CD54 (LFA-1/ICAM-1) и CD2-CD58, которые описаны ранее в этой главе на примере взаимодействия АПК и Т-клетки, поддерживают контакт между Т- и В-клетками. Костимуляторные пары В7-CD28 и CD40-CD154 также играют ключевую роль во взаимодействии В- и Т-лимфоцитов.


Рис. 10.7. Ключевые участники Т-В-кооперации. Штриховкой обозначены элементы, экспрессия которых усиливается при активации. Также показаны цитокины, образуемые T-клеткой, и их влияние на изотип Ig, секретируемый В-клеткой

Презентация В-клеткой комплекса пептид-МНС II класса для TCR увеличивает экспрессию CD154 (лиганд CD40 или CD40L) на Т-клетке-хелпере. Взаимодействие CD40-CD154 в свою очередь усиливает экспрессию костимуляторной молекулы В7 на В-клетке, и В7 взаимодействует с CD28, экспрессированном на Т-клетке. Как указано ранее в подразделе, посвященном взаимодействию АПК с СD4+-T-клетками, взаимодействия CD40-CD154 и В7-CD28 стимулируют в активированной Т-клетке синтез цитокинов, которые индуцируют пролиферацию. Продукция цитокинов Т-хелперной клеткой ведет к пролиферации как самого Т-хелпера, так и В-клетки и синтезу Ig, что обеспечивается за счет увеличения количества цитокиновых рецепторов на активированной В-клетке.

Взаимодействие CD40-CD154 также необходимо для переключения В-клетки на синтез других изотипов Ig, отличающихся от IgM. например IgG (переключение изотипов). Если такого взаимодействия не происходит, возможен синтез только IgM. Эта ситуация описана у людей с нефункциональным CD154 при клиническом состоянии, названном гипep-IgM-синдром, и у так называемых «нокаутных» мышей, не имеющих гена CD154. В обеих ситуациях продуцируются только антитела класса IgM, а антитела других изотипов отсутствуют.

Для переключения изотипов В-клетками также необходимы цитокины, синтезируемые активированными Т-клетками. На рис. 10.7 показано, что изотип антител, которые синтезирует В-клетка, зависит от цитокинов, продуцируемых Т-клеткой. Так, если Т-клетка секретирует IL-4, то В-клетка переключается на продукцию преимущественно IgE и IgG4, а если Т-клетка выделяет IFNγ, то В-клетка переключается на продукцию таких подтипов IgG, которые активируют комплемент.

В-клетки являются особенно эффективными АПК для CD4+-T-клеток при ответах на антигены, с которыми обе клетки уже встречались ранее. Это взаимодействие обычно происходит в специализированных участках лимфатических узлов - фолликулах - с последующей активацией В-клеток, соматическими мутациями и индукцией В-клеток памяти, происходящей в зародышевом центре лимфатического узла. Однако, как уже ранее описывалось в данной главе, наивные СD4+-Т-клетки наиболее эффективно активируются антигенами, которые прошли процессинг и презентируются дендритными клетками. Т-клетки, активированные дендритными клетками при первичном ответе, затем, вероятно, взаимодействуют и активируют В-клетки, которые захватывают антиген с использованием описанных ранее механизмов.

Значение вовлечения Т-клеток в синтез антител В-клетками может быть адекватно оценено с учетом данных об антигенах, для ответа на которые не требуется помощь Т-клеток, - так называемых Т-независимых антигенах, которые обсуждаются далее в этой главе. Эти антигены не приводят к образованию В-клеток памяти, а В-клетки при ответе на них не переключают изотипы синтезируемых Ig, секретируя только IgM.

Функции СD8+-Т-клеток

Рассмотрим другую важную субпопуляцию Т-клеток - СD8+-Т-клетки. Их основной функцией является уничтожение (киллинг) клеток, которые заражены бактериями или вирусами. СD8+-Т-клетки также ответственны за гибель пересаженных чужеродных клеток при отторжении трансплантата и за уничтожение опухолевых клеток. По этой причине СD8+-Т-клетки часто называют Т-киллерами или цитотоксическими Т-лимфоцитами (ЦТЛ) .

Клетка, уничтожаемая ЦТЛ, называется мишенью. В этой роли может выступать специализированная АПК, такая как дендритная клетка, или любая другая клетка организма. В отличие от рецепторов СD4+-Т-клеток TCR СD8+-Т-клеток распознают комбинацию пептидов, связанных с молекулами МНС I класса на поверхности клеток. Это взаимодействие в присутствии соответствующих вторых сигналов (обсуждаются далее) приводит к гибели клетки, представившей пептид.

СD8+-Т-клетки также синтезируют цитокины, в основном те, которые ассоциируются с фенотипом Тн1 СD4+-Т-клеток. В частности, это IFNγ, который необходим при некоторых вирусных и бактериальных инфекциях, а также TNFβ, участвующий в уничтожении клетки-мишени. Однако некоторые СD8+-Т-клетки синтезируют такие цитокины, как IL-4, которые ассоциированы с профилем Тн2 СD4+-Т-клеток.

Активация СD8+-Т-клеток

Выходящие из тимуса СD8+-Т-клетки не могут уничтожать клетки; вначале они должны активироваться, чтобы затем пролиферировать и дифференцироваться. Для активации необходимо присутствие как первого сигнала - взаимодействия комплекса пептид-МНС с TCR, так и вторых, или костимуляторных. Развитие цитолитической функции также требует синтеза цитокинов, в том числе IL-2, IFNγ и IL-12.

На рис. 10.8 показаны два наиболее важных способа активации ЦТЛ в ответ на вирусную инфекцию. В его верхней части показан первый способ, в котором принимают участие СD4+-Т-клетки, специфичные к вирусу и продуцирующие IL-2. При наличии клетки-мишени, инфицированной вирусом, и IL-2, выделяемого СD4+-T-клеткой, индуцируются пролиферация и дифференцировка СD8+-Т-клеток. При таком ответе вирусспецифичные СD4+-Т-клетки активируются при презентации вирусного антигена молекулами МНС II класса на АПК, такой как дендритная клетка или макрофаг. При этом пути активации вирусный эпитоп, который активирует CD4+-T-клетку, вероятнее всего будет отличаться от эпитопа, активирующего СD8+-Т-клетку.


Рис. 10.8. Активация и уничтожение клеток-мишеней CD8+-ЦТЛ

В средней части рис. 10.8 показано, как CD8+-Т-клетки могут активироваться без участия CD4+-Т-клеток. Такой механизм описан при ответе на некоторые вирусы. В этой ситуации используется перекрестное примирование. При таком пути активации вирусные антигены переносятся от мертвой или умирающей инфицированной клетки в профессиональные АПК, такие как дендритные клетки. Затем дендритные клетки процессируют вирусный антиген, размещают его в молекулы МНС I класса и представляют пептиды вирусспецифичным CD8+-T-клеткам.

Так как дендритные клетки также экспрессируют костимуляторные молекулы, такие как В7, они могут активировать вирусспецифичные наивные СD8+-Т-клетки. При этом пути активации СD8+-Т-клетка, вероятно, самостоятельно продуцирует цитокины, необходимые для пролиферации и дифференцировки. Предполагают, что перекрестное примирование может играть важную роль при активации ответов СD8+-Т-клеток на клетки инфицированной ткани, у которых отсутствуют костимуляторные молекулы, а также при ответах на клетки некоторых опухолей.

Какие бы межклеточные взаимодействия ни участвовали в активации СD8+-Т-клеток, весьма вероятно, что первые события этой активации похожи на описанные ранее стадии активации СD4+-Т-клеток. Как и CD4, CD8 связан с тирозиновой киназой Lck, а также взаимодействуют те же пары костимуляторных и адгезионных молекул, что и при активации СD4+-Т-клеток: CD28-В7, CD110/CD18-CD54 (LFA-1-ICAM-1) и CD2-CD58.

Уничтожение СD8+-Т-клетками клеток-мишеней

После активации теперь уже зрелые СD8+-Т-клетки начинают уничтожение клетки-мишени с того, что прикрепляются к ней. В нижней части рис. 10.8 показано, что пары адгезионных молекул, экспрессируемые и на Т-клетке, и на клетке-мишени, помогают поддерживать контакт между клетками в течение нескольких часов. На рисунке также показано, что активированная СD8+-Т-клетка обладает гранулами, в которых содержатся цитотоксические белки, и экспрессирует на поверхности клетки молекулу CD178 (Fas-лиганд). Далее описано, почему эти молекулы являются ключевыми для уничтожения клеток-мишеней.

Предполагают, что СD8+-Т-клетки могут уничтожать мишени двумя способами. Первым и, вероятно, преимущественным путем уничтожения большинства мишеней является выделение цитотоксических веществ, содержащихся в гранулах внутри Т-клеток. После прикрепления к клетке-мишени СD8+-Т-клетка перемещает гранулы к поверхности мембраны, обращенной к мишени, и с помощью процесса, называемого экзоцитозом, выделяет их содержимое на поверхность уничтожаемой клетки. Эти цитотоксические вещества образуют поры в мембране клетки-мишени.

Основными компонентами гранул, участвующих в уничтожении клеток-мишеней, являются перфорин и гранзимы. Перфорин - это молекула, которая полимеризуется с образованием кольцевидных трансмембранных каналов (или пор) в мембране клеток-мишеней. Это приводит к повышению проницаемости клеточной мембраны и, неизбежно, к смерти клетки. Действие перфорина на мембрану клетки похоже на действие мембраноатакующего комплекса комплемента. При уничтожении клеток этим способом ЦТЛ дополнительно используют гранзимы, набор сериновых протеаз.

Гранзимы попадают в уничтожаемую клетку через поры, образуемые при полимеризации молекул перфорина, и взаимодействуют с внутриклеточными компонентами клетки-мишени, стимулируя апоптоз. Поскольку клеточная смерть путем апоптоза не приводит к высвобождению клеточного содержимого, уничтожение инфицированной клетки по этому механизму может предотвращать распространение инфекционного агента (вируса) в другие клетки.

Вторым способом уничтожения клеток-мишеней является взаимодействие CD178 (Fas-лиганда) на поверхности Т-клетки с CD95 (Fas) Fas-рецептором, поверхностной молекулой, экспрессируемой на многих клетках организма. Это взаимодействие активирует апоптоз клетки-мишени путем последовательной активации протеолитических ферментов каспазы внутри клетки. Это приводит к тому, что клетка умирает в течение нескольких часов. После того как СD8+-Т-клетка запустит один или оба описанных механизма уничтожения, она отрывается от клетки-мишени, чтобы атаковать и уничтожить следующие клетки-мишени.

Как будет показано в следующих подразделах, активация СD8+-Т-клеток и уничтожение клетки-мишени являются не связанными событиями. Это можно продемонстрировать на препарате СD8+-Т-клеток человека, инфицированного вирусом. Эти вирусспецифичные цитотоксические клетки способны уничтожать клетки, инфицированные вирусом, и за пределами организма. При уничтожении инфицированных клеток-мишеней не нужно добавлять никакие дополнительные факторы.

Еще раз повторим концепцию МНС-рестрикции Т-клеточного ответа, о которой уже упоминалось в предыдущих главах. Вирусспецифичный СD8+-ЦТЛ распознает, а впоследствии уничтожает клетку-мишень, экспрессируюшую специфическую комбинацию вирусного пептида и определенной молекулы МНС I класса. Это означает, что СD8+-ЦТЛ, специфичный к вирусу гриппа и HLA-A2, например, уничтожает только клетки, которые экспрессируют HLA-A2, нагруженный пептидом, полученным из вируса гриппа. Этот ЦТЛ не уничтожит нормальную неинфицированную клетку организма, экспрессирующую HLA-A2, в отсутствие пептида гриппа.

Кроме того, эта вирусспецифичная СD8+-Т-клетка не уничтожит клетки-мишени, экспрессирующие другие комбинации пептидов с молекулами МНС, такие как пептид из вируса кори с HLA-A2 или даже тот же пептид вируса гриппа, связанный с HLA-B3. Эти открытия Р. Цинкернагеля (R.Zinkernagel) и П.Догерти (P.Doherty) (оба получили Нобелевскую премию в 1996 г.) позволили разработать концепцию МНС-рестрикции Т-клеточного ответа, согласно которой Т-клетка распознает комбинацию антигена с молекулой МНС, а не собственно молекулу антигена.

Экспрессия комплексов пептидов возбудителя с МНС I класса на поверхности клетки приводит к распознаванию инфицированной клетки СD8+-Т-клетками и ее последующему уничтожению. Таким образом, уничтожение СD8+-Т-клетками обеспечивает механизм элиминации любой клетки организма, инфицированной патогенным агентом. Очевидно, что элиминация патогена приводит к разрушению клеток организма-хозяина, но это приемлемая цена, которую организм может заплатить за удаление источника инфекции.

СD8+-Т-клетки практически всегда выступают в качестве цитотоксических клеток как у человека, так и у мыши. Однако существенная часть СD4+-Т-клеток у человека и некоторые - у мыши также обладают цитотоксическими функциями. Как можно предположить из продолжающегося обсуждения МНС-рестрикции, эти цитотоксические СD4+-Т-клетки активируются к уничтожению при распознавании комплекса пептид - МНС II класса на АПК или клетке-мишени. Поскольку активированные СD4+-Т-клетки экспрессируют CD178, но не содержат гранул с цитотоксической активностью, вероятно, они используют взаимодействие CD95-CD178 как основной метод уничтожения клеток-мишеней.

Окончание иммунного ответа: индукция клеток памяти

Антигенная стимуляция увеличивает количество лимфоцитов, специфичных к стимулирующему антигену, а также число лимфоцитов и других эффекторных клеток, которые рекрутируются цитокинами, синтезированными в ходе ответа. Однако, когда антиген уже уничтожен, необходимо уменьшить объем этого пула активированных клеток; в противном случае организм вскоре переполнится размножающимися клеточными популяциями. На рис. 10.9 показан основной механизм уничтожения активированных Т-клеток - клеточная смерть, вызванная активацией.


Рис. 10.9. Клеточная смерть, вызванная активацией. После стимуляции антигеном Т-клетка может уничтожить: 1) саму себя путем выделения растворимой формы CD178 (FasL), который взаимодействует с CD95 (Fas) на той же клетке; 2) другую Т-клетку с CD95, который будет взаимодействовать либо с растворимой, либо мембранной формой CD178

Исследования показывают, что Т-клетки чувствительны к апоптозу после того, как они были активированы, и особенно после повторной стимуляции антигеном. Апоптоз развивается в результате взаимодействия CD95-CD178, которое описано в этой главе ранее. Активированные Т-клетки экспрессируют одновременно и CD95, и CD178 (экспрессия последнего индуцируется активацией). После удаления антигена, например после того, как активированные ЦТЛ уничтожили свои инфицированные мишени, эти ЦТЛ взаимодействуют друг с другом и индуцируют апоптоз.

На рис. 10.9 также показано, что активированные клетки выделяют CD178, и эти секретированные молекулы также могут взаимодействовать с экспрессируемыми на поверхности клеток CD95 и вызывать апоптоз. Предполагают, что взаимодействие CD95- CD178 играет ключевую роль в уничтожении большинства активированных CD4+- и СD8+-Т-клеток по окончании антигенной стимуляции .

Однако не все клетки, активированные антигеном, умирают; выживает небольшая популяция долгоживущих антигенспецифичных клеток. Они образуют популяцию Т-клеток памяти для антигена и CD4+- или СD8+-Т-клетки памяти. Вторичные (с участием клеток памяти) Т-клеточные ответы более эффективны, чем первичные. Одна из причин этого в том, что стартовый объем клонирования популяции памяти, специфичной для определенного антигена, больше, чем размер непримированной популяции, даже после того, как посредством клеточной смерти, вызванной активацией, удалится большинство размножившихся клеток. Также предполагают, что для индукции полной активации Т-клетки памяти не нуждаются в костимуляторных взаимодействиях В7-CD28.

Никаких поверхностных молекул, уникальных для Т-клеток памяти, не обнаружено. Скорее, выявлены небольшие различия в уровне экспрессии тех же молекул (для одних больше, для других меньше) между непримированными Т-клетками и клетками памяти. Также описываются изменения изоформ мембранной фосфатазы CD45; предполагается, что при активации CD45 переходит из формы CD45RA в форму CD45RO, что вызвано альтернативным сплайсингом РНК, транскрибированной с ее гена. Не ясно, необходимо ли наличие антигена, хотя бы и в самой незначительной концентрации, при персистировании клеток памяти; результаты некоторых исследований показывают, что при отсутствии примирующего антигена клетки памяти умирают.

Р.Койко, Д.Саншайн, Э.Бенджамини

Иммуно глобулины представляют собой белки гамма глобулиновой структуры. Молекулы иммуноглобулинов состоят из 2 цепочек: 2Н (2 «тяжелые» цепочки) и 2L (две «легкие» цепочки). В свою очередь тяжелые цепи клоноспецифичны и обозначаются буквами греческого алфавита d, m, a, ol, с, легкие цепи обозначаются буквами к и 1.
В иммуноглобулинах выделяются области с постоянной последовательностью образования аминогексина. К ним относятся постоянные области (sH и sL), гипервариабельные части, шарнирные области.

Существует 5 классов иммуноглобулинов: А, М, G, D, Е.
Иммуноглобулины являются синтезируемыми антителами плазматических клеток.
Иммунный ответ (прил. 1) представляет собой серию молекулярных и клеточных реакций. В гуморальном ответе происходит взаимодействие 3 видов клеток: макрофагов, Т- и В-лейкоцитов.
При фагоцитозе макрофаги фагоцитируют антиген и представляют его пептидные фрагменты на своей клеточной мембране Т-хелперам. Это вызывает активацию В-лимфоцитов, превращающихся в плазматические клетки, которые начинают вырабатывать специфические к антигену антитела.

Иммуноглобулин A (JgA) составляет 10% от числа сывороточных иммуноглобулинов.
Они обнаруживаются в экстра-васкулярных секретах (слюна, слезы, грудное молоко, секрет бронхиальных желез и кишечника, выделения из влагалища и предстательной железы).
Иммуноглобулин М (JgM) представляет собой высокомолекулярное соединение, состоящее из 5 структурных молекул, которые располагаются радиально. Своими Fc -фрагментами они направлены в центр круга, а ^-фрагментами наружу.
Иммуноглобулины класса JgM являются антигенами, появляющимися сразу после инфицирования или иммунизации, а также антителами к иммуноглобулину G при ревматоидных факторах и Холодовыми агглютининами.

Иммуноглобулины G составляют 75% всех сывороточных иммуноглобулинов. Основной их функцией является фиксация комплемента, иммунная защита в период новорожденности. Они нейтрализуют токсины бактерий, связывают частицы. По выполняемым функциям различают иммуноглобулины JgG, JgG2, JgG3, JgG4.
Иммуноглобулин D находится в сыворотке в небольших количествах. Принято считать, что он способен связывать антигены.
Иммуноглобулин Е содержится в небольших количествах, он фиксируется на базофилах и тучных клетках.
С его помощью высвобождается гистамин и гистаминоподобные вещества с развитием аллергических реакций.
Регуляция созревания и функциональная активность клеток иммунной системы происходит под влиянием белковых гормонов и трофических факторов, объединенных названием «цитокины».

К ним относятся:
- интерлейкины;
- интерфероны;
- хемокины;
- лимфопоэтины;
- факторы некроза опухолей.

Воздействие цитокинов на клетки иммунной системы обеспечивается рецепторами, которые располагаются на поверхностных мембранах клеток-мишеней.
Для цитокинов характерна высокая биологическая активность при низком содержании в сыворотке (до 10-9-10-15 г/м). Цитокины быстро подвергаются распаду, от 1 до нескольких десятков минут, и обладают высокой биологической активностью.
Различают цитокины противовоспалительные и иммунного воспаления. К ним относятся гамма-интерферон, интерлейкин-1, -5.

Подавляют противовоспалительные реакции цитокины типа интерлейкина-4, -10, -13.
Помимо этого, цитокины способны оказывать влияние на тонус сосудов, процессы сна и бодрствования, процессы обучения и памяти, регулируют терморегуляцию организма.
Лимфоциты, помимо цитокинов, могут способствовать продукции гормонов, таких как АКТЫ, эндофинов, гормонов пептидной природы, холцистокининов и др.

Гуморальный иммунитет обеспечивается при взаимодействии основных типов клеток - макрофагов, Т- и В-лимфоцитов. Антиген фагоцитируется макрофагами и после внутриклеточных преобразований представляет его пептидные фрагменты Т-хелперам, которые вызывают В-лимфоциты. В-лимфоциты которые превращаются в бластные клетки, а затем в плазматические, синтезирующие по отношению к специфическому антигену антитела.

Для активации Т-хелперов, некоторые способствуют формированию гуморального и клеточного иммунитета, необходимо воздействие интерлейкина-1, выделяемого макрофагами при встрече с антигеном интерлейки на-2.
Для активации В-лимфоцитов необходимо воздействие лимфокинов, вырабатываемых Т-хелперами (интерлейкины-4, -5, -6).
Плазматические клетки синтезируют иммуноглобулины А, М, G, D, F.
Таким образом, схема иммунного ответа представляет собой взаимодействие антигена с клетками иммунной системы.
Антиген обычно взаимодействует с макрофагами, которые он подает Т- и В-лимфоцитам, выполняя функцию антигенподающей клетки. В-лимфоциты обеспечивают клеточный ответ.

Регуляция механизма иммунного ответа находится под многоступенчатым контролем. Уровни регуляции работы иммунной системы могут быть генетическими, клеточными и медиаторными.
Генетический уровень регуляции обеспечивается через Т-клетки, при этом активируются гены иммуноглобулинов, которые определяются многообразием специфических антител; и гены, определяющие высоту иммунного ответа.
Клеточный уровень обеспечивают Т-помощники (хелперы), которые стимулируют В-лимфоциты на образование антител.
При медиаторном типе регуляции включаются медиаторы костно-мозгового происхождения, которые обеспечивают созревание Т- и В-лимфоцитов.

Антитела или иммуноглобулины – это растворимые гликопротеины человека и теплокровных животных, присутствующие в сыворотке крови (составляют около 30% всех белков сыворотки крови), тканевой и других жидкостях или на мембране некоторых типов клеток (В-лимфоциты) и участвующие в распознавании и нейтрализации чужеродных объектов (антигенов), например, бактерий и вирусов. Иммуноглобулины специфично распознают антигены, связываясь с определённым эпитопом – характерным фрагментом поверхности или линейной аминокислотной последовательностью антигена. Впервые они были обнаружены в 1890 г. Берингом и Китасато. Различают поликлональные (производятся разными клетками) и моноклональные (потомки одной клетки) антитела.

К свойствам антител относят:

  • аффинность – сродство к антигену, сила взаимодействия антитела с антигеном. Определяется через K A или K D . Высокоаффинные антитела имеют K D ≈ 10 9 -10 11 M -1
  • специфичность – взаимодействие антитела с определенным эпитопом антигена
  • бифункциональность – распознавание и связывание антигена, и выполнение эффекторных функций

В связи с этим, антитела, выполняющие антиген-распознающую, антиген-связывающую и ряд эффекторных функций, являются важнейшим фактором специфического гуморального иммунитета (Табл.1).

Табл.1. Классификация антител млекопитающих в зависимости от выполняемых эффекторных функций, строения и аминокислотного состава тяжёлых цепей.

Виды антител и их синтез.

Синтез молекул иммуноглобулинов осуществляется в плазматических клетках. Тяжелые и легкие цепи молекулы синтезируются на разных хромосомах и кодируются разными наборами генов. Динамика выработки антител в ответ на антигенный стимул зависит от того, впервые или повторно организм сталкивается с данным антигеном. При первичном иммунном ответе появлению антител в крови предшествует латентный период продолжительностью 3-4 дня. Первые образующиеся иммуноглобулины принадлежат к lgM. Затем количество антител резко возрастает и происходит переключение синтеза с lgM- на lgG-антитела. Максимум содержания антител в крови приходится на 7-11-е сутки, после чего их количество постепенно снижается. Для вторичного иммунного ответа характерны укороченный латентный период, более быстрое нарастание титров антител и большее их максимальное значение. Характерно образование сразу lgG-антител. Способность к иммунному ответу по вторичному типу сохраняется в течение многих лет и представляет собой проявление иммунологической памяти, примерами которой может служить иммунитет против кори и оспы.

Выделение антител и их очистка.

Различают неспецифические и специфические методы выделения антител. К неспецифическим относят методы фракционирования иммунных сывороток, в результате которых получают фракции, обогащенные антитела, чаще всего фракцию lgG-антител. К ним относятся высаливание иммуноглобулинов сульфатом аммония или сернокислым натрием, осаждение иммуноглобулинов спиртом, методы препаративного электрофореза и ионообменной хроматографии и гель-хроматографии. Специфическая очистка основана на выделении антител из комплекса с антигеном и приводит к получению иммуноглобулинов одной специфичности, но гетерогенных по физико-химическим свойствам. Процедура состоит из следующих этапов: получение специфического преципитата (комплекса антиген - антитело) и отмывка его от остальных компонентов сыворотки; диссоциация преципитата; отделение антител от антигена на основе различий в их молекулярной массе, заряде и других физико-химических свойств. Для специфического выделения антител широко используют иммуносорбенты - нерастворимые носители, на которых фиксирован антиген. В этом случае процедура получения иммуноглобулинов значительно упрощается и включает пропускание иммунной сыворотки через колонку с иммуносорбентом, отмывку иммуносорбента от не связавшихся белков сыворотки, элюцию фиксированного на иммуносорбенте антитела при низких значениях рН и удаление диссоциирующего агента путем диализа.

Компания Биалекса производит и продаёт высокочувствительные , для in vitro диагностики и научных исследований. В нашем каталоге, включающем более 300 наименований, Вы найдёте полный ассортимент продуктов по следующим направлениям иммунодиагностики: сердечно-сосудистые заболевания, ветеринария, гормоны, иммунология, инфекционные и вирусные заболевания, свёртывание крови, анемия, фертильность и репродукция.

Рекомендованные пары антител проходят предварительную стадию тестирования с клиническими образцами. Антитела и антигены надёжно работают в целом ряде иммунохимических методов, таких как: прямой и непрямой иммуноанализ (ELISA), иммуноанализ сэндвич-типа, вестерн-блоттинг, иммунопреципитация, иммунохроматография, иммунофлуоресценция и иммуноцитохимическое окрашивание.

Лимфатическая система человека выполняет ряд важных защитных функций, которые предупреждают развитие патогенных микроорганизмов или вирусов в жидких средах, клетках и тканях. За гуморальный иммунитет отвечают В-лимфоциты, которые при дальнейшем созревании синтезируют иммуноглобулины (Ig). Строение этих веществ позволяет находить, помечать и уничтожать пришедшие в организм антигены. В чем заключаются

Плазматические клетки

Все лимфатические клетки организма человека делятся на две большие группы: Т-лимфоциты и В-лимфоциты. Первые отвечают за клеточный иммунитет, поглощая антигены в процессе фагоцитоза. Задача вторых заключается в синтезе специфических антител - гуморальный иммунитет.

В-лимфоциты детерминируются во вторичных лимфоидных органах (лимфатические узлы, селезенка), а затем формируют популяцию плазмоцитов, которые также называются плазматическими клетками. Они в дальнейшем мигрируют в красный костный мозг, слизистые оболочки и ткани.

Плазмоциты достигают больших размеров (до 20 мкм), окрашиваются базофильно, т. е. в фиолетовый цвет с помощью красителей. В центре этих клеток находится крупное ядро с характерными глыбками гетерохроматина, которые напоминают спицы колеса.

Цитоплазма окрашивается светлее, чем ядро. В ней располагается мощный транспортный центр, состоящий из эндоплазматической сети и аппарата Гольджи. АГ развит достаточно сильно, формируя так называемый светлый дворик клетки.

Все перечисленные структуры направлены на синтез антител, которые отвечают за гуморальный иммунитет. Строение молекулы иммуноглобулина имеет свои особенности, поэтому важно постепенное и качественное созревание этих структур в процессе синтеза.

Собственно, для этого и развита такая густая сеть ЭПС и аппарата Гольджи. Также плазмоцитов, заключенный в ядре, направлен преимущественно на синтез белков антител. Зрелые являются примером высокой степени детерминации, поэтому редко делятся.

Строение антител иммуноглобулина

Эти высоко специализированные молекулы являются гликопротеидами, т. к. имеют белковую и углеводную части. Нас интересует скелет иммуноглобулинов.

Молекула состоит из 4 пептидных цепей: две тяжелые (Н-цепи) и две легкие (L-цепи). Они соединяются друг с другом с помощью дисульфидных связей, и в результате мы можем наблюдать форму молекулы, напоминающую рогатку.

Строение иммуноглобулинов направлено на соединение с антигенами с помощью специфических Fab-фрагментов. На свободных концах “рогатки” каждый такой участок образован двумя вариабельными доменами: одним от тяжелой и одним от легкой цепи. Каркасом служат постоянные домены (по 3 на каждой тяжелой и по одному на легких цепях).

Подвижность вариабельных концов иммуноглобулина обеспечивается наличием шарнирного участка в месте, где формируется дисульфидная связь между двумя Н-цепями. Так намного упрощается процесс взаимодействия антиген-антитело.

Остается нерассмотренным третий конец молекулы, который не взаимодействует с чужеродными молекулами. Он называется Fc-участком и отвечает за прикрепление иммуноглобулина к мембранам плазмоцитов и других клеток. Кстати, легкие цепи могут быть двух видов: каппа (κ) и лямбда (λ). Они соединены между собой дисульфидными связями.Также имеется пять видов тяжелых цепей, по которым классифицируют различные типы иммуноглобулинов. Это α-(альфа), δ-(дельта), ε-(эпсилон), γ-(гамма) μ- (мю) цепи.

Некоторые антитела способны образовывать полимерные структуры, которые стабилизируются за счет дополнительных J-пептидов. Так образуются димеры, тримеры, тетрамеры или пентомеры Ig определенного типа.

Еще одна дополнительная S-цепь характерна для секреторных иммуноглобулинов, строение и биохимия которых позволяют им функционировать в слизистых оболочках полости рта или кишечника. Эта дополнительная цепь предотвращает разрушение молекул антител природными ферментами.

Строение и классы иммуноглобулинов

Разнообразие антител в нашем организме предопределяет вариабельность функций гуморального иммунитета. Каждый класс Ig имеет свои отличительные характеристики, по которым нетрудно догадаться об их роли в иммунной системе.

Строение и функции иммуноглобулинов напрямую зависят друг от друга. На молекулярном уровне они отличаются аминокислотной последовательностью тяжелой цепи, типы которой мы уже упомянули. Следовательно, выделяют 5 видов иммуноглобулинов: IgG, IgA, IgE, IgM и IgD.

Особенности иммуноглобулина G

IgG не образует полимеры и не встраивается в мембраны клеток. В составе молекул выявлено присутствие гамма-тяжелой цепи.

Отличительной чертой этого класса является тот факт, что только данные антитела способны проникать через и формировать иммунную защиту зародыша.

IgG составляет 70-80 % всех сывороточных антител, поэтому молекулы легко обнаруживаются лабораторными методами. В крови 12 г/л - среднее содержание этого класса, и такой показатель обычно достигается уже к 12 годам.

Строение иммуноглобулина G позволяет выполнять следующие функции:

Иммуноглобулин А: особенности и функции

Этот класс антител встречается в двух формах: сывороточной и секреторной.

В сыворотке крови IgA составляет 10-15 % всех антител, а его среднее количество составляет 2,5 г/л к 10-летнему возрасту.

Больше нас интересует секреторная форма иммуноглобулина А, т. к. около 60 % молекул данного класса антител сосредоточены в слизистых оболочках организма.

Строение иммуноглобулина А также отличается своей вариативностью за счет наличия J-пептида, который может участвовать в образовании димеров, тримеров или тетрамеров. За счет этого один такой комплекс антител способен связывать большое количество антигенов.

Во время образования IgA к молекуле присоединяется еще один компонент - S-белок. Его главной задачей является защита всего комплекса от разрушительного действия ферментов и других клеток лимфатической системы человека.

Иммуноглобулин А содержится в слизистых оболочках желудочно-кишечного тракта, мочеполовой системы и дыхательных путей. Молекулы IgA обволакивают антигенные частицы, тем самым препятствуя их адгезии на стенках полых органов.

Функции этого класса антител следующие:

  1. Нейтрализация антигенов.
  2. Являются первым барьером среди всех молекул гуморального иммунитета.
  3. Опсонируют и маркируют антигены.

Иммуноглобулин М

Представители класса IgM выделяются большими размерами молекулы, т. к. их комплексы являются пентамерами. Всю конструкцию поддерживает J-белок, а каркасом молекулы являются тяжелые цепи ню-типа.

Пентамерная структура характерна для секреторной формы этого иммуноглобулина, однако существуют и мономеры. Последние крепятся к мембранам В-лимфоцитов, тем самым помогая клеткам обнаруживать патогенные элементы в жидкостях организма.

Всего 5-10 % составляет IgM в сыворотке крови, а его содержание в среднем не превышает 1 г/л. Антитела данного класса являются самыми древними в эволюционном плане, а синтезируются они только В-лимфоцитами и их предшественниками (плазмоциты на это не способны).

Количество антител М повышается у новорожденных, т.к. это является фактором интенсивной секреции IgG. Такая стимуляция положительно влияет на развитие иммунитета младенца.

Строение иммуноглобулина М не позволяет проникать через плацентарные барьеры, поэтому обнаружение этих антител в жидкостях плода становится сигналом о нарушении обменных механизмов, инфекции или дефекте плаценты.

Функции IgM:


Особенности иммуноглобулина D

Данный вид антител изучен достаточно мало, поэтому их роль в организме до конца не выяснена. Встречаются IgD только в виде мономеров, в сыворотке крови эти молекулы составляют не больше 0,2 % от всех антител (0,03 г/л).

Основная функция иммуноглобулина D - это рецепция в составе мембраны В-лимфоцитов, однако только 15 % всей популяции этих клеток имеют IgD. Прикрепляются антитела с помощью Fc-конца молекулы, а тяжелые цепи относятся к дельта-классу.

Строение и функции иммуноглобулина Е

Этот класс составляет незначительную долю всех антител сыворотки крови (0,00025 %). IgE, он же реагин, обладают высокой цитофильностью: мономеры этих иммуноглобулинов прикрепляются к мембранам тучных клеток и базофилов. В результате IgE влияет на выработку гистамина, который приводит к развитию воспалительных реакций.

В строении иммуноглобулина Е присутствуют тяжелые цепи эпсилон-типа.

Из-за малого количества эти антитела очень сложно обнаруживаются лабораторными методами в сыворотке крови. Повышенное содержание IgE является важным диагностическим признаком возникновения аллергических реакций.

Выводы

Строение иммуноглобулинов напрямую влияет на их функции в организме. Гуморальный иммунитет играет большую роль в поддержании гомеостаза, поэтому все антитела должны работать четко и слаженно.