Клетка мононуклеарная. Реферат система мононуклеарных фагоцитов в организме человека Смотреть что такое "Система мононуклеарных фагоцитов" в других словарях

Моноцитарно-макрофагальная система)

физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.

Основой современного представления о С. м. ф. является фагоцитарная теория, разработанная И.И. Мечниковым в конце 19 в., и учение немецкого патолога Ашоффа (К. А.L. Aschoff) о ретикулоэндотелиальной системе (). Первоначально РЭС была выделена морфологически как система клеток организма, способных накапливать краситель кармин. По этому признаку к РЭС были отнесены гистиоциты соединительной ткани, моноциты крови, клетки Купфера печени, а также ретикулярные клетки кроветворных органов, эндотелиальные клетки капилляров, синусов костного мозга и лимфатического узлов. По мере накопления новых знаний и совершенствования морфологических методов исследования стало ясно, что представления о ретикулоэндотелиальной системе расплывчаты, не конкретны, а в ряде положений просто ошибочны. Так, например, ретикулярным клеткам и эндотелию синусов костного мозга и лимфатических узлов длительное время приписывалась роль источника фагоцитирующих клеток, что оказалось неверным. В настоящее время установлено, что мононуклеарные фагоциты происходят из циркулирующих моноцитов крови. Моноциты созревают в костном мозге, затем поступают в кровяное русло, откуда мигрируют в ткани и серозные полости, становясь макрофагами. Ретикулярные клетки выполняют опорную функцию и создают так называемое микроокружение для кроветворных и лимфоидных клеток. Эндотелиальные клетки осуществляют транспорт веществ через стенки капилляров. Непосредственного отношения к защитной системе клеток ретикулярные клетки и сосудов не имеют. В 1969 г. на конференции в Лейдене, посвященной проблеме РЭС, понятие « » было признано устаревшим. Вместо него принято понятие « ». К этой системе относят гистиоциты соединительной ткани, клетки Купфера печени (звездчатые ретикулоэндотелиоциты), альвеолярные макрофаги легких, макрофаги лимфатических узлов, селезенки, костного мозга, плевральные и перитонеальные макрофаги, остеокласты костной ткани, микроглию нервной ткани, синовиоциты синовиальных оболочек, клетки Лангергаиса кожи, беспигментные гранулярные дендроциты. Различают свободные, т.е. перемещающиеся по тканям, и фиксированные (резидентные) макрофаги, имеющие относительно постоянное место.

Макрофаги тканей и серозных полостей, по данным сканирующей электронной микроскопии, имеют форму, близкую к сферической, с неровной складчатой поверхностью, образованной плазматической мембраной (цитолеммой). В условиях культивирования макрофаги распластываются на поверхности субстрата и приобретают уплощенную форму, а при перемещении образуют множественные полиморфные . Характерным ультраструктурным признаком макрофага служит наличие в его цитоплазме многочисленных лизосом и фаголизосом, или пищеварительных вакуолей (рис. 1 ). Лизосомы содержат различные гидролитические , обеспечивающие переваривание поглощенного материала. Макрофаги - активные секреторные клетки, которые освобождают в окружающую среду ферменты, ингибиторы, компоненты комплемента. Основным секреторным продуктом макрофагов является . Активированные макрофаги секретируют нейтральные (эластазу, коллагеназу), активаторы плазминогена, факторы комплемента, такие как С2, С3, С4, С5, а также .

Клетки С. м. ф. обладают рядом функций, в основе которых лежит их способность к эндоцитозу, т.е. поглощению и перевариванию инородных частиц и коллоидных жидкостей. Благодаря этой они выполняют защитную функцию. Посредством хемотаксиса макрофаги мигрируют в очаги инфекции и воспаления, где осуществляют микроорганизмов, их умерщвление и переваривание. В условиях хронического воспаления могут появляться особые формы фагоцитов - эпителиоидные клетки (например, в инфекционной гранулеме) игигантские многоядерные клетки типа клеток Пирогова - Лангханса и типа клеток инородных . которые образуются путем слияния отдельных фагоцитов в поликарион - многоядерную клетку (рис. 2 ). В гранулемах макрофаги вырабатывают гликопротеид фибронектин, который привлекает фибробласгы и способствует развитию склероза.

Клетки С. м. ф. принимают участие в иммунных процессах. Так, непременным условием развития направленного иммунного ответа является первичное взаимодействие макрофага с антигеном. При этом поглощается и перерабатывается макрофагом в иммуногенную форму. Иммунная лимфоцитов происходит при непосредственном контакте их с макрофагом, несущим преобразованный антиген. Имунный ответ в осуществляется как сложное многоэтапное взаимодействие Г- и В-лимфоцитов с макрофагами.

Макрофаги обладают противоопухолевой активностью и проявляют цитотоксические свойства в отношении опухолевых клеток. Эта особенно выражена у так называемых иммунных макрофагов, осуществляющих опухолевых клеток-мишеней при контакте с сенсибилизированными Т-лимфоцитами, несущими цитофильные ().

Клетки С. м. ф. принимают участие в регуляции миелоидного и лимфоидного кроветворения. Так, островки кроветворения в красном костном мозге, селезенке, печени и желточном мешке эмбрионе формируются вокруг особой клетки - центрального макрофага, организующего эритробластического островка. Клетки Купфера печени участвуют в регуляции кроветворения путем выработки эритропоэтина. Моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов. В вилочковой железе (тимусе) и тимусзависимых зонах лимфоидных органов обнаружены так называемые интердигитирующие клетки - специфические стромальные элементы, также относящиеся к С. м. ф., ответственные за миграцию и дифференцировку Т лимфоцитов.

Обменная макрофагов заключается в их участии в обмене . В селезенке и костном мозге макрофаги осуществляют , при этом в них происходит накопление железа в форме гемосидерина и ферритина, которое питом может реутилизироваться эритробластами.

Библиогр.: Карр Ян. Макрофаги: обзор ультраструктуры и функции, . с англ., М., 1978; Персина И.С. Клетки Лангерганса - структура, функция, роль в патологии, . патол., т. 47, вып. 2, с. 86, 1985.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Система мононуклеарных фагоцитов" в других словарях:

    См. Система макрофагов … Большой медицинский словарь

    I Система (греч. systēma целое, составленное из частей; соединение) совокупность каких либо элементов, связанных между собой и рассматриваемых как единое и функциональное структурное целое. II Система организма совокупность органов и (или) тканей … Медицинская энциклопедия

    - (s. macrophagorum, LNH; син.: аппарат ретикулоэндотелиальный, ретикулоэндотелий, ретотелий, система мононуклеарных фагоцитов, С. ретикулоэндотелиальная (РЭС), ткань ретикулоэндотелиальна) С., включающая все клетки организма, способные поглощать… … Большой медицинский словарь

    Совокупность всех встречающихся в организме фагоцитов. К ним относятся как макрофаги, так и моноциты. Ретикулоэндотелиальная система обеспечивает защиту организма от микробной инфекции и удаление старых клеток крови из циркулирующего кровотока.… … Медицинские термины

    СИСТЕМА РЕТИКУЛОЭНДОТЕЛИАЛЬНАЯ - (reticuloendothelial system), РЭС (RES) совокупность всех встречающихся в организме фагоцитов. К ним относятся как макрофаги, так и моноциты. Ретикулоэндотелиальная система обеспечивает защиту организма от микробной инфекции и удаление старых… … Толковый словарь по медицине

    РЭС, макрофагическая система, совокупность клеток мезенхимного происхождения, объединяемых на основе способности к фагоцитозу; свойственна позвоночным животным и человеку. К РЭС относят клетки ретикулярной ткани, эндотелия синусоидов (расширенных … Биологический энциклопедический словарь

    СМФ - система мононуклеарных фагоцитов Специальный межгосударственный форум … Словарь сокращений русского языка

    - (греч. hēpar, hēpat печень + лат. lien селезенка; синоним печеночно селезеночный синдром) сочетанное увеличение печени (гепатомегалия) и селезенки (спленомегалия), обусловленное вовлечением в патологический процесс обоих органов. Встречается… … Медицинская энциклопедия

    I Кроветворение (синоним гемопоэз) процесс, заключающийся а серии клеточных дифференцировок, в результате которых образуются зрелые клетки крови. Во взрослом организме существуют родоначальные кроветворные, или стволовые, клетки. Предполагают,… … Медицинская энциклопедия

    I Агранулоцитоз (agranulocytosis; греч. отрицательная приставка а + лат. granulum зернышко + гистологическое cytus клетка + ōsis; синоним: гранулоцитопения, нейтропения) полное или почти полное исчезновение из крови гранулоцитов. Число остальных… … Медицинская энциклопедия

Рис. 7.1. Мононуклеарная фагоцитарная система

Мононуклеарная фагоцитарная (МФ) система - это совокупность клеток, происходящих из моноцитов, обладающих фагоцитарной активностью. Кроме того, к фагоцитирующим клеткам относятся полинуклеарные фагоциты (ПМЯЛ) - нейтрофилы, эозинофилы, базофилы, микроглия (на рис. затушеваны).

Важную роль в механизмах неспецифичкской защиты играют также ретикулярные, эндотелиальные клетки, которые не выполняют фагоцитарной функции, а поддерживают целостность лимфоидной ткани и кровеносных сосудов (Эндотелиальные клетки выстилают сосуды, ретикурные является основой кроветворных органов, образуются из мезенхимы).

Фагоцит, описанный И.И. Мечниковым, состоит из 7 следующих фаз:

1) Хемотаксис - движение клеток в направлении градиента молекул, выделенных микроорганизмами.

Хемотаксические факторы упорядочивают движения фагоцитов. Они воздействуют на специфические рецепторы на плазмолемме фагоцитов стимуляция которых передается на элементы его цитоскелета и изменяет экспрессию адгезивных молекул. Вследствие этого формируются псевдоподии, которые обратимо прикрепляются к элементам соединительной ткани, что обеспечивает направленную миграцию клеток.

2) Адгезия (прикрепление) клетки к объекту фагоцитоза Происходит при взаимодействии её рецепторного аппарата с молекулами на поверхности бактерии. Протекает в две стадии: -обратимая и непрочная -необратимая, прочная.

3) Захват бактерии клетки с формированием фагосомы Псевдоподии охватывают бактерию, заключая ее в мембранный пузырек - фагосому. Если бактерия инкапсулирована, то на нее садятся IgG или СЗВ. В таком случае бактерия опсонизирована.

4) Слияние гранул нейтрофила с фагосомой с образованием фаголизосомы Содержимое гранул выливается в просвет фаголизосомы (рН кислая).

5) Повреждение и внутриклеточное переваривание бактерии Гибель бактерии наступает вследствие действия на нее антимикробных веществ, далее он подвергается перевариванию лизосомальными ферментами. Бактерицидный эффект усиливается действием токсичных реактивных биоокислителей (перикисью водорода, молекул. Кислородом, супероксидными радикалами, гипохлоритом...)

Гидрофобность



Рис. 7.2. Схема фаго

Рис. 7.2. Схема фагацитоза

Фагоцитоз, являясь механизмом неспецифической защиты (фагоцитироваться могут любые инородные частицы независимо от наличия иммунизации), в то же время способствует иммунологическим механизмам защиты. Это связано, во-первых, с тем, что поглощая макромолекулы и расщепляя их, фагоцит как бы раскрывает структурные части молекул, отличающиеся чужеродностью. Во-вторых, фагоцитоз в условиях иммунологической защиты протекает быстрее и эффективнее. Таким образом, явление фагоцитоза занимает промежуточное место между механизмами специфической и неспецифической защиты. Это еще раз подчеркивает условность деления механизмов защиты клеточного гомеостаза на специфические и неспецифические.

Нефагоцитарный механизм разрушения микробов характерен для ситуаций, когда микроорганизмы имеют столь большие размеры, что клетки не могут их поглощать. В таких случаях фагоциты скапливаются вокруг бактерии и выбрасывают содержимое своих гранул, уничтожая микроб большими концентрациями антимикробных веществ.

Воспалительная реакциия также относится к клеточным неспецифическим реакциям. Она является эволюционно выработанным процессом защиты внутренней среды от проникновения чужеродных макромолекул, поскольку внедрившиеся в ткань чужеродные начала, например, микроорганизмы, фиксируются в месте внедрения, разрушаются и даже удаляются из ткани во внешнюю среду с жидкой средой очага воспаления - экссудатом. Клеточные элементы как тканевого происхождения, так и выходящие в очаг из крови (лейкоциты), образуют вокруг места внедрения своеобразный защитный вал, препятствующий распространению чужеродных частиц по внутренней среде. В очаге воспаления особенно эффективно протекает процесс фагоцитоза



Гуморальные факторы внутренней среды, обеспечивающие механизмы неспецифической защиты, представлены пропердиновой системой и системой комплемента, осуществляющие лизис чужеродных клеток. При этом система комплемента, хотя и может активироваться неиммунологическим путем, обычно вовлекается в иммунологические процессы и поэтому скорее должна относиться к специфическим механизмам защиты.

Рис.7.3. Система комплемента.

Пропердиновая система реализует свой защитный эффект независимо от иммунных реакций.

К числу гуморальных факторов неспецифической защиты относят также содержащиеся в плазме крови и тканевой жидкости лейкин ы, плакины, бетализины, л и з о ц м и т.д.. Лейкины выделяются лейкоцитами, плакины - тромбоцитами крови, они оказывают отчетливое бактериолитическое действие. Еще большим литическим эффектом на стафилококки и анаэробные микроорганизмы обладают бета-лизины плазмы крови. Содержание и активность этих гуморальных факторов не меняются при иммунизации, что дает основание считать их неспецифическими факторами защиты. К числу последних следует также отнести и довольно большой спектр веществ тканевой жидкости, обладающих способностью подавлять ферментативную активность микроорганизмов и жизнедеятельность вирусов. Это ингибиторы гиалуронидазы, фосфолипаз, коллагеназы, плазмина и интерферон лейкоцитов.

Материалы публикуются для ознакомления, и не являются предписанием к лечению! Рекомендуем обратиться к врачу-гематологу в вашем лечебном учреждении!

Атипичные мононуклеары, также называемые вироцитами, представляют собой клетки крови, имеющие аналогию строения с лимфоцитами и моноцитами. Возникновение вироцитов в крови говорит о распространении в организме инфекции различного происхождения. Превышение допустимой концентрации — признак прогрессирующего инфекционного заболевания, в частности мононуклеоза.

Атипичные мононуклеары или вироциты — разновидность лимфоцитов, клеточная структура которых имеет сходство с . Они имеют одноядерное строение. Появление в крови может указывать на развитие инфекционного вирусного заболевания. Если при этом наблюдается изменение количественного показателя крови, это указывает на прогресс вируса в организме.

Важно! В данном случае проводится дополнительное обследование, так как атипичные мононуклеары характерны для инфекционного мононуклеоза.

Факторы появления вироцитов в крови

Причиной возникновения мононуклеарных клеток в крови является попадание в организм человека вирусной инфекции.

Важно! Когда человек полностью здоров, атипичные мононуклеары в крови составляют минимальный процент или вовсе отсутствуют.

Когда уровень вироцитов в анализе крови составляет более 10%, данное состояние может спровоцировать:

  • инфекционное, вирусное заболевание в острой форме (в частности, мононуклеоз, ветряная оспа);
  • вакцинация (как ответная реакция организма на введение фрагментов вируса).

Примечание: мононуклеары атипичные в начале развития патологии увеличивают свою численность вместе с другими видами клеток (палочкоядерными нейтрофилами), в то время как концентрация сегментоядерных клеток уменьшается.

Атипичные мононуклеары в крови у ребенка, как правило, вызваны вирусом Эпштейна-Барра, поражающим верхние дыхательные пути, шейные лимфоузлы. Высокая концентрация вирусных клеток наблюдается на поверхности глотки, в тканях печени, селезенки, лимфоузлах. Поэтому после инкубационного периода, длящегося от 5 до 15 суток, нередко отмечается увеличение размеров селезенки и печени.

Инфекционный мононуклеоз причисляют к вирусам группы герпесов 4 типа.

Симптомы, характерные при увеличении уровня мононуклеарных клеток у детей

Дети первого года жизни наименее подвержены заболеванию Эпштейна-Барра. Объясняется это наличием врожденного пассивного иммунитета к данному вирусу. Однако у детей в 7-10 лет отмечается снижение защитных функций организма, в связи с чем у пациентов данной возрастной группы нередко обнаруживаются атипичные мононуклеары в общем анализе крови. В этом возрасте зарегистрировано наибольшее число заболеваний инфекционным мононуклеозом.

Симптомы, которые являются признаком повышения вироцитов в крови у ребенка:

  • гипертермия (высокая температура тела — 38 0 и выше);
  • усиленное потоотделение;
  • уплотнение, увеличение лимфатических узлов (в шейной области);
  • налет белого цвета на миндалинах;
  • набухание небных миндалин;
  • количественное изменение химического состава крови (изменение лимфоцитарной формулы);
  • увеличение размеров печени, селезенки.

Примечание: согласно статистическим данным более подвержены инфекционному мононуклеозу мальчики в возрасте до 10 лет.

Признаками инфицирования может быть кожная сыпь, имеющая петихиальный характер и различную локацию.

Признаки повышения атипичных мононуклеаров у взрослых

Клинические проявления начальной стадии патологии у взрослых:

  • упадок сил;
  • тошнота;
  • катаральные явления — отечность носоглотки, затрудненное носовое дыхание, сиплость голоса, прочее;
  • гнойные образования на задней стенке гортани;

Основными проявлениями патологий, при которых возрастает численность атипичных мононуклеаров, являются:

  • проявления интоксикации (тошнота, потоотделение, озноб, прочее);
  • набухание лимфоузлов;
  • одновременно увеличение размеров селезенки, печени;
  • мигрень;
  • усиление боли в суставах, мышцах;
  • появление симптомов ангины (гиперемии слизистой неба, желтый налет рыхлой структуры на небных миндалинах, боль в горле).

Примечание: может наблюдаться отечность лица по причине нарушенного лимфооттока. Лимфоузлы могут увеличиваться до 5 см в диаметре. При пальпации болезненные ощущения либо незначительны, либо вовсе отсутствуют.

В активной фазе мононуклеоза увеличивается печень и селезенка. При этом нередко возникает желтушный синдром со следующими проявлениями:

  • тошнота, доходящая до рвоты;
  • снижение, отсутствие аппетита;
  • изменение цвета мочи (потемнение, мутность);
  • тянущая боль, чувство распирания в подреберье с правой стороны;
  • желтый оттенок кожных покровов, глазного белка;
  • расстройство стула (запор, диарея).

Спустя 10-12 дней после появления первых симптомов по телу может распространиться пятнисто-папулезная сыпь неопределенной локализации, которая не вызывает зуда.

Болезни, при которых возрастает уровень атипичных клеток

Атипичные мононуклеары в общем анализе крови являются признаком инфекции в организме. Точный диагноз можно установить исходя из следующих критериев форменных клеток:

  • изменение структуры и формы;
  • увеличение количества;
  • изменение процентного соотношения между разными видами клеток.

Примечание: содержание вироцитов в пределах 10-15% с большой вероятностью указывает на развитие инфекционного мононуклеоза.

При каких заболеваниях характерны атипичные мононуклеары? Это может быть токсоплазмоз, вирус герпесной группы, ВИЧ, онкологические патологии, прочее.

1218 0

Макрофаги и моноциты относятся к так называемым профессиональным антигенпрезентирующим клеткам и, согласно современным представлениям, объединены в систему мононуклеарных фагоцитов, в которую также входят монобласты и промоноциты.

Подобно нейтрофилам они участвуют в обеспечении первой линии защиты против различных чужеродных воздействий.

Наряду со своими основными функциями - представление антигена, фагоцитоз и цитотоксичность - эти клетки осуществляют и различные регуляторные влияния. Современные представления о мононуклеарных фагоцитах свидетельствуют об их участии как во врожденном, так и приобретенном иммунитете.

В отличие от других клеток, обладающих выраженной способностью к фагоцитозу (нейтрофилы, тучные клетки, базофилы, эозинофилы), как моноциты периферической крови, так и тканевые макрофаги являются предметом интенсивного изучения, что нашло отражение во множестве публикаций. Не осталось в стороне и изучение роли мононуклеарных фагоцитов при опухолевом процессе, что способствовало накоплению множества данных, расширяющих информацию по этому вопросу.

Характеристика макрофагов

Сегодня известно, что роль мононуклеарных фагоцитов проявляется не только в фагоцитировании и презентации антигена - функциях, которые наиболее изучены, но и регуляторными влияниями, которые они оказывают на функции других клеток, что в целом определяет разностороннюю форму участия моноцитов и макрофагов в поддержании как иммунологического, так и тканевого гомеостаза.

Характеристика мононуклеарных фагоцитов как антигенпрезентирующих клеток была дана в первой части монографии. В связи с этим нам представляется целесообразным ограничить изложение данных этой главы, во-первых, сведениями, которые отражены в литературе последних лет, а во-вторых, теми, которые могут иметь значение для понимания их роли в опухолевом процессе.

Макрофаги - долгоживущая популяция клеток, их максимальное количество находится в соединительной и лимфоидной тканях, особенно ассоциированных со слизистой оболочкой. Как известно, своеобразным аналогом макрофагов в печени являются клетки Купфера, которые фагоцитируют, осуществляют процессинг и представление различных антигенов, а в мозгу - клетки микроглии и астроциты.

Контроль созревания моноцитов в костном мозгу осуществляется такими цитокинами, как IL-3, GM-CSF, M-CSF, IFNa/в; избирательным фактором роста мононуклеарных фагоцитов является M-CSF.

Известно, что моноцитопоэз усиливается провоспалительными цитокинами макрофагов по принципу обратной связи: после дифференцировки моноцитов в макрофаги последние начинают продуцировать цитокины, которые, в свою очередь, усиливают моноцитопоэз.

На различных его стадиях превалирующая роль принадлежит различным цитокинам, однако в конечном счете основными в этом процессе являются IL-3, GM-CSF, M-CSF, IL-9, IL-11, IFNy, IL-4. Моноциты могут быть прямыми предшественниками дендритных клеток in vivo, которые стали известны как CD8a+дендритные клетки (ДК) и могут осуществлять перекрестную презентацию антигена CD8+ Т-лимфоцитам.

Поверхностная мембрана макрофагов в высшей степени мозаична, так как формируется большим количеством различных соединений (белками, углеводами, липидами), ее наружная и внутренняя поверхности связаны и характеризуются способностью быстро и постоянно синтезировать вещества, которые ее формируют, что обеспечивает надежность реализации мононуклеарными фагоцитами их важнейших функций (фагоцитоза, цитотоксичности и др.). Такая мобильность, очевидно, является результатом сложного эволюционного пути, который прошли фагоцитирующие клетки.

Поверхность мембраны мононуклеарных фагоцитов изобилует различными рецепторами, из которых наиболее разносторонне изучены FcR для иммуноглобулинов, а также рецепторы к цитокинам, гормонам, различным фракциям комплемента. Интерес к изучению рецептора к Fc-фрагменту иммуноглобулина обусловлен тем, что эти рецепторы играют одну из главных ролей в осуществлении практически всех функций фагоцитирующих клеток.

Известны три типа рецепторов для иммуноглобулинов, которые были идентифицированы при изучении макрофагов мышей:

1) высокоаффинный рецептор для IgG - FcyRI (CD64), обладающий способностью связываться с мономерным агрегированным IgG, а также входящий в состав иммунных комплексов; экспрессируется исключительно на макрофагах и нейтрофилах и опосредует фагоцитоз и антителозависимую цитотоксичность;

2) низкоаффинный рецептор для IgG - FcyRII (CD32);

3) FcyRIII (CD16), который связывает IgG только в составе иммунных комплексов и экспрессируется макрофагами, нейтрофилами, тучными клетками и естественными киллерами.

Некоторые FcyR обладают повышенным сродством к отдельным подклассам IgG (IgGp IgG2a, IgG3, IgG4). FcR могут связываться и с иммуноглобулинами других изотипов (М, А, Е). В частности, связывание с IgM особенно характерно для перитонеальных макрофагов крыс, IgA - моноцитов человека и IgE - альвеолярных и перитонеальных макрофагов крыс, моноцитов человека. Низкоаффинный Fc-рецептор связывается с IgE (FceR), что сопровождается усилением транскрипции генов TNFa и IL-ip с резким усилением продукции этих цитокинов макрофагами.

FcRI могут экспрессировать как покоящиеся макрофаги, так и активированные IFNy. Практически все антигенпрезентирующие клетки, включая и макрофаги, способны экспрессировать высокий уровень FcRI параллельно с экспрессией антигенов II класса главного комплекса гистосовместимости (ГКГ) , CD40, CD88. Новый взгляд на антигенпрезентирующие клетки позволяет рассматривать FcRI как связующее звено между врожденным и адоптивным иммунитетом в результате поглощения иммунных комплексов, что в последующем имеет значение для индукции Т-зависимого ответа.

Одной из важных характеристик FcR, обеспечивающих их быструю реакцию на различные воздействия, является способность к перераспределению на мембране и взаимодействию с в2-интегринами (молекулярные основы этого взаимодействия остаются неизвестными).

Наряду с Fc-рецепторами, участвующими в активации макрофагов, описан еще один - FcRIIb - уникальный ингибиторный рецептор, который ингибирует внутриклеточные сигналы при взаимодействии с иммунными комплексами, содержащими IgG.

Благодаря изучению этого рецептора получены новые и очень важные данные, согласно которым антиген способен взаимодействовать с активационными и ингибиторными Fc-рецепторами как макрофагов костного мозга, так и клеток Лангерганса и дендритных клеток, что способствует усилению Т-клеточной пролиферации и индукции гуморального иммунитета.

Эти данные свидетельствуют о том, что FcRIIb, несмотря на то что он является инги-биторным рецептором, способен осуществлять и позитивную регуляцию презентацией иммунных комплексов, в состав которых входит IgG, что уже сегодня подтверждено при исследовании дендритных клеток.

Только мононуклеарные фагоциты экспрессируют трансмембранный белок CD163, который является членом семейства рецепторов-скавенджеров (рецепторы-мусорщики - scavenger receptor family), и его экспрессия регулируется антивоспалительными медиаторами.

Интерес к изучению роли этого рецептора в последнее время возрастает в связи с доказательствами его участия в различных патологических процессах и его способностью связываться с системой гаптоглобина-гемоглобина (Hb-Hp), что вызывало активацию продукции IL-10 и ингибировалось анти-СD163-антителами. Имеющиеся по этому вопросу данные с полным основанием рассматриваются как идентификация нового пути защитного противовоспалительного эффекта моноцитами и макрофагами человека.

Как отмечалось, естественные киллеры и активированные цитотоксические лимфоциты (ЦТЛ) экспрессируют рецепторы NKG2D. Макрогфаги также экспрессируют этот рецептор, который способен распознавать некоторые поверхностные лиганды, связанные с антигенами I класса ГКГ.

Такие лиганды активно экспрессируются клетками при ряде патологических процессов, а также опухолевыми клетками, и связывание с ними сопровождается активацией макрофагов; не исключено, что экспрессия NKG2D и их перераспределение на поверхности клеток играет роль в нерестрикти-рованном (естественном) лизисе.

Мононуклеарные фагоциты экспрессируют также: антигены I и II классов главного комплекса гистосовместимости; МАС-1; la-антигены; различные адгезивные молекулы (LFA-1, LFA-3, ICAM-1, ICAM-2, интегрины и др.); рецепторы для компонентов комплемента (CR1, CR3, CR4, CR5, CD35, CD88 и др.); рецепторы для цитокинов (IL-1 - CDwl25, TNF - CD120a/b, IFNy - CDwll9); рецепторы для хемокинов (СС1, СС2, ССЗ, СС4, СС5, СС6, СС7, СС8), которые связываются с различными хемоаттрактантами (MIP-1, MIP-la, МIР-1р, МСР, RANTES и др.); маннозные, маннозофруктозные или лектиноподобные рецепторные молекулы, а также рецепторы для фибронектина. Поверхность макрофагов имеет и TOLL-подобные рецепторы - TLR-2 и TLR-4, с участием которых осуществляются защитный эффект макрофагов и апоптоз макрофагов, нагруженных бактериями.

Наряду с экспрессией классических антигенов I и II классов ГКГ при активации макрофагов экспрессируются антигены HLA-G. Их экспрессия обнаружена на клетках, инфильтрирующих карциному легкого, и в значительно меньшей степени - при незлокачественных заболеваниях легких.

Предполагается, что при экспрессии HLA-G может нарушаться презентация антигена, что приводит к ослаблению иммунологического ответа и таким образом благоприятствует развитию как злокачественного, так и воспалительного процесса.

На поверхности макрофагов экспрессируются рецепторы и для различных гормонов (инсулина, тиреотропина, р-адренергических, эстрогенов, глюкокортикоидов, соматостатина, гонадотропина и др.), что делает возможным их участие во взаимодействии с нервной и эндокринной системами, а также в репродуктивных процессах. Так, эстрогены проявляют защитный эффект против нейродегенерации при острых и хронических повреждениях мозга, и именно макрофаги головного мозга принимают участие в эффектах 17b-эстрадиола (Е2) на нейроны.

Наряду с этим данные, полученные в последнее время, показывают, что макрофаги и моноциты участвуют в патогенезе различных нейровоспалительных процессов (множественный склероз, болезнь Альцгеймера, церебральная ишемия), что связано с выделением ими различных цитокинов, металлопротеиназ, экспрессией CD40 и связыванием его со своим лигандом CD40L.

Макрофаги экспрессируют ко-стимулирующие молекулы (CD80, CD86 и др.), что, как правило, сочетается с индукцией ответа Тh2-лимфоцитов. Аналогичные ко-стимулирующие молекулы экспрессируют и клетки Купфера.

Характерным для мононуклеарных фагоцитов является и экспрессия рецептора для трансферина, который активно связывается с трансферином сыворотки крови (участок связывания находится внутри макрофагов). Предполагается, что появление этого рецептора соответствует стадии активации макрофагов и характерным для активации изменениям мембраны.

В функционировании макрофагов существенную роль играет и гистамин, рецепторы для которого экспрессируют мононуклеарные фагоциты. В этом аспекте наиболее изучены моноциты периферической крови, которые гетерогенны по способности экспрессировать указанные рецепторы.

Исследование макрофагоподобных клеток линии Р38821 показало, что добавление гистамина в культуральную среду увеличивает количество внутриклеточного кальция и циклического гуанозинмонофосфата (цГМФ) . Эти эффекты реализуются через H1-рецепторы - доказательство того, что именно через эти рецепторы осуществляется модуляция некоторых биологических функций макрофагов, а Са2+ и цГМФ выполняют при этом роль вторичных мессенджеров.

Гистамин, а также серотонин активируют альвеолярные и пери-тонеальные макрофаги. Совсем недавно было показано, что макрофаги поглощают гистамин и таким образом включаются в нейтрализацию его отрицательных эффектов в очагах воспаления. Гистамин вместе с ПГЕ-2 (вазапростан) и катехоламинами регулирует врожденный и приобретенный иммунитет, усиливая взаимодействие между моноцитами и другими клетками.

Функции макрофагов

В реализации ряда функций макрофагов большую роль играют и рецепторы к лактоферину - железосвязывающему белку, который присутствует в различных секретах и наряду с бактерицидными свойствами обладает иммуномодулирующими эффектами, угнетая продукцию IL-2, IL-1, TNFa, усиливая цитотоксичность моноцитов и естественных киллеров.

Практически все антигенпрезентирующие клетки имеют рецептор для gp96 - белка теплового шока. Этот рецептор - а2-макроглобулин (CD91) - располагается интрацеллюлярно и выделяется только при некротической, но не апоптической смерти, что предполагает его участие как сенсора некротической клеточной смерти.

На макрофагах печени идентифицирован рецептор М-4, который является рецептором для раково-эмбриональных антигенов. Установлено, что на клетках рака кишечника MIP101 также экспрессируется этот рецептор, который существует в различных изоформах и регулируется тканеспецифически.

Далее, макрофаги и моноциты экспрессируют рецептор к меланокортину (MC-1R) и в результате взаимодействия этого рецептора с меланоцитстимулирующим гормоном, который функционирует как медиатор иммунитета и воспаления, снижается продукция IL-1, IL-2, IL-6, IL-13, IL-24, TNFa, IFNy и повышается IL-10.

По количеству продуктов, синтезируемых и выделяемых макрофагами, они занимают одно из ведущих мест по сравнению с другими клетками системы иммунитета, и их конкурентами могут быть только тучные клетки и нейтрофилы.

Мононуклеарные фагоциты экспрессируют Fas и FasL, что может вызывать спонтанный апоптоз, осуществляемый как аутокринным, так и паракринным путем. При активации моноциты быстро выделяют растворимую форму FasL, что свидетельствует об их способности реагировать на изменение окружающей среды.

Экспрессия Fas и связывание с FasL мононуклеарными фагоцитами индуцирует активационные сигналы, в результате чего как моноциты, так и макрофаги выделяют TNFa и IL-8, а культуральная среда этих клеток содержит факторы, стимулирующие миграцию нейтрофилов.

Однако в процессах, индуцированных Fas-лигацией, в моноцитах и макрофагах наблюдаются некоторые различия. Эти различия проявляются в том, что продукция указанных цитокинов моноцитами сопровождается последующим апоптозом и блокируется ингибитором каспаз, а цитокиновый ответ макрофагов происходит в отсутствие апоптоза и является каспазонезависимым.

Эти данные достаточно демонстративно показывают, что Fas-лигация моноцитами может индуцировать провоспалительный ответ, что приводит к острому воспалению и тканевому повреждению. Такой провоспалительный ответ проявляют и преапопто-тические нейтрофилы, что предполагает ряд общих проявлений Fas-лигации различными фагоцитирующими клетками.

Макрофаги продуцируют IL-1, IL-6, IL-8, IL-12, IL-18, TNFa, IFNa, IFNp, МСР-1, TGFP, фактор роста фибробластов (FGF) , тромбоцитозависимый ростовой фактор (PDGF) и др. Недавно было установлено, что макрофаги продуцируют MIF (macrophage migration inhibitory factor) - цитокин, который впервые был идентифицирован как Т-клеточный цитокин; MIF рассматривается как активный кандидат в провоспалительные цитокины, включающийся в гормональную регуляцию и воспаление.

Н аряду с указанными, а также другими цитокинами макрофаги содержат и при определенных условиях могут выделять:

1) лизосомальные ферменты (протеиназы, дезоксирибонуклеазы, липазы, лизоцим, коллагеназу, эластазу, миелопероксидазу и др.);
2) кислородные радикалы (Н2O2, супероксид, нитрооксид и др.);
3) гормоны (антидиуретический гормон (АДКГ) , тимозин, андрофин);
4) компоненты комплемента (C1, С2, С3, С4, С5); а также витамин D3, простагландины, лейкотриены, факторы В и D, пропердин, фибронектин, хондриотин сульфат, трансферин, авидин, амилопротеин Е и др.

Важное значение в понимании особенностей функционирования макрофагов имеют появившиеся новые данные о том, что в регуляции усиления дифференцировки макрофагов принимает участие ген, контролирующий р53; наличие мутаций в указанном гене лишает его такой способности. Этот факт представляет особый интерес при развитии злокачественных новообразований, для которых характерно появление мутаций в гене р53, что лишает его возможности усиливать дифференцировку макрофагов.

Обсуждая значение макрофагов в поддержании иммунологического и тканевого гомеостаза, нельзя обойти вниманием еще один и, как представляется, очень важный вопрос. Речь идет о том, что макрофаги обладают способностью к дифференцированному распознаванию и фагоцитированию апоптотических телец и некротических частиц.

Несмотря на то что этой способностью обладают и некоторые другие клетки, у макрофагов она выражена наиболее сильно. Это направление исследований активно разрабатывается V. Fadok и соавторами, в результате чего в настоящее время стали известны механизмы и условия фагоцитирования апоптотических телец. Макрофаги появляются и распознают апоптотические тельца, используя различные механизмы, включая интегрины, фосфатидилсерин (PS)-3, лектины и др.

Моноцитозависимые и альвеолярные макрофаги человека, костномозговые макрофаги мышей распознают и фагоцитируют апоптотические тельца через систему интегрина vb3, которая на макрофагах человека ассоциируется с CD36 - SR-B суперсемейство рецепторов-скавенджеров; его лиганды: коллаген I, IV, V, тромбоспондин, фосфолипиды, длинная цепь жирных кислот.

Клонирован ген, который кодирует этот рецептор, и показано, что в течение апоптоза макрофагами наблюдается асимметрия в расположении мембранных фосфолипидов, что особенно выражено тогда, когда макрофаги экспрессируют фосфатидилсерин.

При изучении альвеолярных макрофагов было установлено, что экспрессия рецептора-скавенджера и CD14 регулируется IL-6 и IL-10. Однако при этом отмечается различный характер регуляторных влияний этих цитокинов на указанные рецепторы: IL-6 усиливает экспрессию CD14 и подавляет экспрессию мРНК рецептора-скавенджера; в отличие от этого IL-10 снижает экспрессию CD14 и увеличивает экспрессию рецептора-скавенджера (все эффекты дозозависимы и определяются временем культивирования).

Моноцитозависимые макрофаги человека при фагоцитировании апоптотических телец используют CD14 - рецептор липополисахарида, функция которого в полной мере не выяснена.

Процесс связывания и фагоцитирования апоптотических телец сопровождается противовоспалительным действием, что происходит с участием аутокринных и/или паракринных механизмов, которые включают TGF|3, ПГЕ-2 и фактор активации тромбоцитов (PAF). При фагоцитозе апоптотических телец макрофагами человека ингибируется продукция IL-4, IL-8, IL-10, GM-CSF, TNFa, лейкотриена С-4, тромбоксана В-2; параллельно с этим увеличивается продукция TGFpi, ПГЕ-2 и PAF.

Следует подчеркнуть, что многие рецепторы, необходимые для распознавания апоптотических телец, имеют очень важное значение и для врожденного иммунитета. Эти рецепторы включают интегрины, рецепторы-скавенджеры классов А и В, лектиноподобный рецептор LOX1 (lectinlike oxidized), некоторые рецепторы для комплемента и CD14.

Несколько неожиданно, а возможно, даже парадоксально, что когда эти рецепторы связываются с микроорганизмами или их продуктами, то во многих случаях развивается провоспалительная реакция и наблюдается стимуляция приобретенного иммунитета. В отличие от этого поглощение апоптотических телец не связано с воспалением, при этом приобретенный иммунитет не активируется. В связи с этим следует объяснить такую диаметральную противоположность процессов, которые происходят при активации одних и тех же рецепторов.

Эти данные независимо от того, какая интерпретация будет дана им в будущем, являются в высшей степени важными и интересными, так как раскрывают неизвестные ранее формы участия макрофагов в воспалении и приобретенном иммунитете.

Далее, в опытах, проведенных на костномозговых макрофагах, было показано, что после поглощения некротических нейтрофилов они стимулировали пролиферацию Т-лимфоцитов in vitro, увеличивали экспрессию CD40 и такие макрофаги содержали высокий уровень TGFP, но низкий TNFa; аналогичных эффектов при фагоцитировании апоптотических нейтрофилов не наблюдали.

Высокий уровень содержания TGFP в макрофагах при фагоцитировании апоптотических телец рассматривается как защита от провоспалительных цитокинов, этот процесс происходит при участии р38, митогенактивирующей киназы (МАРС) и NF-kappaB.

Накопленные данные свидетельствуют о том, что поглощение и переваривание некротических или лизированных клеток индуцируют иммунологический ответ и воспаление, чего не происходит при фагоцитировании апоптотических телец.

В связи с этим очень правомочен вопрос, который ставят V. Fadok и соавторы в названии одной из своих статей: "Может ли фосфатидилсериновый рецептор быть молекулярным переключателем, который устанавливает, кто должен уйти?". Поставленный вопрос не лишен дискуссионной направленности и предполагает не только сложность ответа, но и тот трудный путь, который нужно пройти для его получения.

Глубокий биологический смысл феномена, который заключается в особенностях фагоцитирования некротических и апоптотических клеток, очевиден. Нарушение механизмов очищения организма путем апоптоза может быть причиной перехода острого воспаления в хронические воспалительные заболевания, включая и аутоиммунную патологию.

К сожалению, этот в высшей степени интересный вопрос еще очень мало изучен при опухолевом процессе. Имеющиеся работы единичны. В качестве примера можно привести данные о фагоцитозе апоптотических клеток линии НТ-29 карциномы толстой кишки человека.

Эти исследования показывают, что экспрессия молекул фосфатидилсерина и углеводных цепей изменяется в зависимости от стадии фагоцитоза: экспрессия галактозы была в равной степени важна для всех стадий апоптоза, экспрессия фосфатидилсерина - на последующих и поздних стадиях.

Изучение этого вопроса при опухолевом процессе может представить интерес по различным соображениям. Вполне реально предположить, что, с одной стороны, поглощение апоптотических телец при определенных условиях может создать резервуар опухолевых антигенов в макрофагах с последующей их презентацией, с другой - фагоцитирование некротизированных опухолевых клеток может быть одной из причин супрессирующих влияний макрофагов на клетки системы иммунитета.

Наконец, нельзя не согласиться с предположением, что выделение макрофагами супрессирующих цитокинов при фагоцитировании лизированных опухолевых клеток может быть одной из причин ухода опухоли из-под иммунологического контроля.

Обсуждая вопрос о фагоцитировании макрофагами апоптотических и некротических телец, следует также отметить, что макрофаги , экспрессирующие FasL, способны фагоцитировать апоптотические опухолевые клетки, не экспрессирующие указанный антиген.

Бережная Н.М., Чехун В.Ф.

  • II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  • 7 Сист монон-рных фагоцитов обьединяет на основе единства происхождения, морфологии и функции моноциты переферической крови тканевые макрофаги различной локализации. Моноциты переферической крови в присутствии определенных факторов могут дифференцироваться не только в тканевые макрофаги но и в дендритные клетки(ДК). Такими факторами явл-ся ГМ-КСФ и ИЛ-4. В рез-те действия этих цитокинов обр-ся мономорфная популяция ДК, имеющая хар-ки незрелых ДК переферических тканей. Созревание, дифференцировка и активация макрофагов зависят от ростовых факторов(ИЛ-3, ГМ-КСФ,М-КСФ) и от активирующих цитокинов (IFN-y).Среди функций IFN-y одной из важнейшей явл-ся активация эффекторных функций макрофагов: их внутриклеточной микробицидности и цитотоксичности, продукции ими цитокинов, супероксидных и нитроксидных радикалов, простагландинов.

    Осн. Ф-ии макрофагов: 1) Фагоцитоз и пиноцитоз-поглощение частиц или клеток за счет обтекания их псевдоподиями. Благодаря фагацитозу макрофаги участвуют в удалении из орг-ма иммунных комплексов и клеток, подвергшихся апоптозу. 2)участие в процессах репарации и заживления ран-макрофаги секретируют несколько ростовых факторов, стимулирующих ангиогенез и индуцируют формирование грануляционной ткани и реэпитализацию: базисный фактор роста фибробластов(bFGF), ростовые трансформирующие факторы GTF-a, GTF-b, инсулиноподобный ростовой фактор (IGF). 3) Секреторная-секретируют более 100 различных видов молекул. А) ферменты неспецифической противоинфекционной защиты(перксидаза, активные формы кислорода, окись азота, катионные белки, лизоцим и интерферон) Б) ферменты, активные в отношении внелеточных белков-коллагеназа, эластаза, активаторы плазминогена, лизосомные ферменты. В) БАВ, являющиеся медиаторами и модуляторами различных физиологических процессов, в первую очередь-воспаления: простагландины, лейкотриены, циклические нуклеотиды. Г) вещества, активирующие или регулирующие иммунные реакции. 4) регуляция иммунного ответа-моноциты крови и тканевые макрофаги синтезируют ряд факторов, влияющих на дифференцировку, пролиферацию и функциональную активность других участников иммунного ответа-определенных субпопуляций Т- и В-лимфоцитов 5) эффекторные функции макрофагов при специфическом иммунном ответе-проявляются в реакциях ГЗТ, когда в инфильтратах находят, в осн. Моноциты. Рецепторы макрофагов-на пов-ти макрофагов сод-ся большой набор рецепторов, обеспечивающих участие макофагов в широком круге физиологических реакций, в т.ч. и участие в специфическом иммунном ответе. Так, на мембране макрофагов экспрессированы различные рецепторы для захвата микроорганизмов: маннозный рецептор (MMR). Рецепторы для бактериальных липополисахаридов (CD14), на мембране макрофагов эксперссированы рецепторы для захвата опсонизированных микроорганизмов: FcR для иммуноглобулинов, а также CR1, CR3, CR4-для фрагментов активированного комплемента. На мембране макрофагов эксперссированы гликопротеиновы рецепторы для многих цитокинов. Связывание цитокина со своим рецептором служит первым звеном в цепи передачи сигнала активации к ядру клетки.



    Неспецифические механизмы защиты. Характеристика макро- и микрофагов.

    Неспецифические (врожденные) клеточные механизмы защиты обеспечиваются фагоцитами: 1. макрофаги (мононуклеарные клетки). 2. микрофаги (полинуклеарные клетхи).

    Фагоциты:

    макрофаги (мононуклеарные клетки) (нейтро- . зоэино- ,базофилы)



    Моноциты

    Фагоциты открыты в 1882 Мечниковым.

    Макрофаги являются мононукпеарными клетками и раньше объе­диняются в мононуклеарную фагоцитарную систему - моноциты красного костного мозга, свободные тканевые макрофаги и фиксированные тканевые макрофаги. Моноциты красного костного мозга находятся в центре эритробластического островка (недифференциротанные клетки) и даёт начало всем-макрофагам: моноциты красного костного мозга выходят а кровь и сущест­вуют там в качестве моноцитов крови (6-8% от лимфоцитов крови). Моноциты крови способны проходить сквозь эпителий кровеносных сосудов тканей, где он превращается в макрофаг. Назад макрофаги в кровь не возвращаются. Если моноциты крови имеют диаметр 11-20 нм. то тканевые макрофаги имеют размеры 40-50 мкм. Т. е. макрофаги увеличиваются в размерах и называются распластанными макрофагами, которые могут взаимодействовать с лимфоцитами. Еще на их поверхности образуются рецепторы для взаимодействия с lg G и комплементом. Такое взаимодейст­вие макрофагов с lo G и комплементами способствует фагоцитозу.

    Макрофаги делятся на: 1. макрофаги легких (альвеолярные). 2. макрофаги соединительной ткани (гистиоциты) 3. макрофаги серозных полостей. 4. макрофаги воспалительных экссудатов.

    Свободные макрофаги диффузно рассеяны по всему организму и свободно перемещаются, что способствует освобождению организма от чужеродного материала. Распластанные макрофаги способны склеиваться между собой, создавая конгиамераты, которые создают условия (механиче­ское препятствие) для распространения микроорганизмов. Кроме того макрофаги являются АПК.

    Тканевые (связанные) макрофаги входят в состав идентичных ор­ганов: 1. макрофаги печени (купферовские клетки) - с большим количеством отростков, очищают кровь поступающую по воротной вене от кишечника. Участвуют в обмене НЬ и желчных пигментов. 2. макрофаги селезенки (находятся в корковом и мозговом слое) - имеют множество отростков, обладают фагоцитарной силой, уничтожают старые эритроциты. 3. макрофа­ги лимфоузлов - находятся в корковом и мозговом веществе, обезвреживают микроорганизмы лимфы. 4. макрофаги плаценты - защищают плаценту от бактерий. 5. макрофаги микрогпии - фагоцитируют продукты распада нервной ткани и запасают жир.

    Все макрофаги продуцируют БАВ - цитокины, которые связывают функции макрофаги воедино.

    Микрофаги полинуклеарные фагоциты, происходят из стволовых клеток красного костного мозга, на 2/3 состоят из иейтрофилов, эозинофилов до 5%, базофилов до1%. i

    Нейтрофилы, эозинофилы. базофилы выходят из кровяного русла; в ткани и превращаются в микрофаги, назад не возвращаются. Самые сильные нейтрофилы могут уничтожить до 30 бактерий. Сила их оценивает­ся по фагоцитарной и бактериальной активности и хемотаксическим свойствам. При инфекции микрофаги устремляются из кровяного русла в ткани, т. к. увеличивается проницаемость сосудов для них. Это обусловлено повышением гистамина при воспалительных процессах. Второй пик проницаемости через 6-8 часов после проникновения и связан с действием.