Причины повреждения клетки. Повреждение Повреждение клетки причины

Причины повреждения клетки: экзо- и эндогенные; физические, биологические, химические.

Повреждение клетки это изменение функционирования клетки, которое сохраняется после удаления повреждающего агента.

Повреждение клетки может быть частичным или полным, обратимым или необратимым. Необратимое повреждение может привести к деструкции и гибели клетки.

Повреждение клетки может быть первичным и вторичным.

Первичное повреждение клетки - это результат непосредственного действия повреждающего фактора. Различают первичные повреждения: а) механические, б) термические, в) химические, г) радиационные.

Вторичные повреждения клетки - это такие, когда результат первичного воздействия сам становится повреждающим фактором и вторично повреждает здоровые до этого момента структуры.

Первичные повреждающие клетку факторы вызывают специфические, присущие только им эффекты. Эти эффекты связаны с характером первичного повреждающего фактора:

а) механические - вызывают нарушение целостности структуры ткани, клеток, межклеточных и субклеточных структур.

Ь) термические - связаны с денатурацией белков. белково-липидных комплексов и изменением вторичной структуры нуклеиновых кислот

с) химические - угнетают активность ферментов, блокируют клеточные рецепторы, вызывают перестройку молекул за счет гидролиза, переаминирования и т.п.

с) радиационные - приводят к разрушению молекул с образованием свободных радикалов.

Независимо от природы первичного повреждающего фактора, ответная реакция поврежденной клетки стандартна и называется неспецифической реакцией клетки на повреждение.

Причина такого стандартного ответа заключается в том, что при любом повреждении обязательно: 1) нарушаются барьерные функции мембран клеточной и внутриклеточной; 2) выключаются ионные насосы.

Реакция клеток на повреждение проявляется в структурных и функциональных изменениях клетки.

Основные структурные изменения следующие:

а) повышение проницаемости мембраны пострадавшей клетки;

Ь) уменьшение дисперсности коллоидов цитоплазмы и ядра

с) увеличение вязкости цитоплазмы, которому иногда предшествует уменьшение вязкости

1) увеличение сродства цитоплазмы и ядра к ряду красителей.

Степень выраженности зависит от силы и продолжительности повреждающего агента.

По степени выраженности различают:

а) паранекроз - обратимые нарушения структуры и функции клетки

Ь) некробиоз - необратимые повреждения (гибель) части клеток в ткани.

с) некроз - массовая гибель клеток с активацией лизосомальных ферментов и разрушением других клеточных структур. Этот процесс называется аутолизом. Значение аутолиза - удаление мертвых клеток и замена их новыми клетками или элементами соединительной ткани.

Проявления повреждения клеток

1. Увеличение проницаемости цитоплазматической мембраны: 1) белкам и коллоидным краскам (макромолекулы); 2) к аминокислотам и глюкозе (вещества с низкой молекулярной массой); 3) к ионам.

2. Уменьшение электрического сопротивления ткани. Электрическое сопротивление ткани называется импеданс . Он состоит из омической и емкостной составляющей. Емкостная составляющая обусловлена тем, что клеточные мембраны, по сути, представляют собой конденсаторы. Омическая составляющая зависит от омического сопротивления цитоплазмы и мембран.

3. Увеличение сродства к красителям цитоплазмы и ядра клетки. Это явление связано с тем, на фоне повышенной проницаемости мембраны при окраске клетки красителя в нее поступает значительно больше.

4. Изменение мембранного потенциала. Это явление чрезвычайно характерно для неспецифического ответа клетки на повреждение. Причины: 1) прямое повреждение мембраны; 2) нарушение работы мембранных ионных насосов за счет снижения содержания в клетке АТФ. Снижение мембранного потенциала наблюдается при холодовом, радиационном, аллергическом повреждениях клеток и их органелл.

5. Выход ионов К + из клеток. В норме внутри клетки содержится больше ионов К + , чем вне ее. Такое соотношение обеспечивается: 1) работой Nа + -К + -АТФ-азы, которая постоянно накачивает К + внутрь клетки; 2) спонтанным выходом К + из клетки за счет диффузии в область с более низкой концентрацией. Причина потери ионов К + - нарушение работы Nа + -К + -АТФ-азы в результате угнетения окислительного фосфорилирования в митохондриях.

6. Накопление ионов Са 2+ в гиалоплазме. В норме поступающий в клетку Са 2+ аккумулируется в митохондриях, поэтому в гиалоплазме концентрация ионов Са 2+ примерно в 10 000 раз ниже, чем вне клетки. При повреждении накопление в митохондриях угнетается и содержание ионов Са 2+ в гиалоплазме нарастает. Причина: нарушение окислительного фосфорилирования в митохондриях и уменьшение мембранного потенциала митохондрий.

7. Набухание клеток. Форма и объем клеток зависят от: 1) состояния цитоскелета клетки; 2) разницы между онкотическим и осмотическим давлением внутри и вне клетки (онкотическое п осмотическое давление определяется количеством белков и ионов в единице объема. Другое название этой величины «коллоидно-осмотическое давление». Увеличение объема клеток происходит при 1) накоплении белков и ионов внутри клетки; 2) снижении их концентрации вне клетки. В результате коллоидно-осмотическое давление в клетке становится больше, чем вне ее и молекулы воды переходят в клетку с целью выравнивания концентраций. Последствия: сдавление микрососудов и нарушение микроциркуляции.

8. Нарушение структуры и функции митохондрий. Всего 4 нарушения: 1) снижение потребления кислорода - связано с уменьшением скорости переноса электронов по дыхательной цепи. 2) увеличение проницаемости внутренней митохондриальной мембраны может привести к разобщению окислительного фосфорилирования в митохондриях и изменению показателей работы митохондрий. Существует 2 (два) показателя работы митохондрий: коэффициент Р/О и коэффициент дыхательного контроля ДК. Коэффициент Р/О - это отношение количества синтезированной АТФ к количеству поглощенного кислорода. Коэффициент дыхательного контроля - это отношение скорости дыхания митохондрий в присутствии субстратов окисления, АДФ и ортофосфата к скорости дыхания митохондрий в отсутствии АДФ. Снижение ДК до единицы и Р/О до 0 говорит о разобщении окислительного фосфорилирования в митохондриях.; 3) снижение способности накапливать кальций - приводит к увеличению его концентрации в гиалоплазме. Развивается в результате снижения мембранного потенциала и разобщения окислительного фосфорилирования в митохондриях; 4) набухание митохондрий - связано с поступление воды внутрь митохондрий и приводит к их разрыву. Различают активное и пассивное набухание митохондрий. Пассивное набухание митохондрий - происходит за счет движения молекул воды в митохондрию при увеличении коллоидно осмотического давления внутри нее и не требует затрат энергии. Активное набухание митохондрий - это движение молекул воды в митохондрию исключительно вслед за фосфатом К + . Фосфат К + поступает в митохондрии при уменьшении мембранного потенциала ниже 170-180 мВ со знаком «минус».

9. Активация лизосомальных ферментов и ацидоз. Увеличение проницаемости клеточных и внутриклеточных мембран касается и мембран лизосом. Из них выбрасываются активные липазы, протеазы, нуклеазы и другие ферменты. Немедленно начинается распад белков, жиров, пуриновых и пиримидиновых оснований. Образуются кислоты: амино-, жирные и нуклеиновые. Они диссоциируют на водород и кислотный остаток и среда закисляется. РН падает до 6,0 и ниже.

10. Апоптоз - это запрограммированная гибель клетки, которая необходима для удаления старых клеток или замены одних клеток другими. Стадии апоптоза: 1) поступление сигнала на поверхность клетки. Сигнал - поступление или непоступление определенных веществ; 2) связывание сигнальной молекулы с рецептором на поверхности клетки; 3) запуск каскада реакций внутриклеточной сигнализации; 4) активация синтеза деструктивных ферментов, в частности эндонуклеаз; 5) аутолиз.

11. Повреждение генетического аппарата клетки - это разрушение нуклеиновых кислот ядра и рибосом.

12. Последовательность нарушений в клетке при гипоксии - выучить по учебнику на стр. 28._Общий вывод: 1) необратимые повреждения наступают только через 1-1,5 часа после прекращения поступления кислорода. В более ранние сроки возможно восстановление функций клетки; 2) при проведении лечебных мероприятий врач должен ориентироваться на указанные сроки.

13. Порочный круг клеточной патологии. Неспецифическая реакция клеток на повреждение - это типовой патологический процесс. Его основными звеньями являются: 1) повреждение клеточной и внутриклеточных мембран; 2) снижение уровня АТФ; 3) увеличение содержания Са 2+ в цитоплазме; 4) активация деструктивных ферментов - мембранных фосфолипаз, эндонуклеаз; 5) разрушение фосфолипидов мембраны и усугубление ее повреждения. На 4-м и 5-м этапах наблюдаем смену причинно-следственных отношений, когда следствие (активация деструктивных ферментов) становится источником новых повреждений мембраны.

ТЕМА: Повреждение клетки

ПРИЧИНЫ И ВИДЫ ПовреждениЯ клетки

Повреждение клетки – типовой патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, приводящие к нарушению структурной целостности клетки и её функциональных способностей.

Повреждение клетки – этотакие изменения её структуры, метаболизма, физико-химических свойств и функции, которые ведут к нарушению жизнедеятельности клетки.

Причины повреждения клетки.

По природе повреждающего фактора: физические, химические, биологические (рис. 1).

По происхождению повреждающие факторы подразделяются на экзогенные и эндогенные .

Экзогенные факторы (действуют на клетку извне):

физические воздействия (механические, термические, лучевые и др.),

химические агенты (кислоты, щёлочи, этанол и др.),

инфекционные факторы (вирусы, риккетсии, бактерии, гельминты и др.).

Эндогенные факторы (образуются и действуют внутри клетки):

физической природы (например, избыток свободных радикалов, колебания осмотического давления),

химические факторы (например, накопление или дефицит ионов Н+, K+, Ca2+ и др., углекислого газа, метаболитов и др.),

биологические агенты (например, лизосомальные ферменты, иммуноглобулины, дефицит или избыток гормонов, ферментов и др.).

Рис. 1. Причины повреждения клеток

Виды повреждения клетки. В зависимости от скорости развития основных проявлений повреждение клетки может быть острым и хроническим . Острое повреждение развивается быстро, как правило, в результате однократного, но интенсивного повреждающего воздействия, в то время как хроническое повреждение протекает медленно и является следствием многократных, но менее интенсивных патогенных влияний.

Различают непосредственное (первичное) и опосредованное (вторичное) повреждения . Последнее возникает как следствие первичных нарушений постоянства внутренней среды организма (гипоксия, ацидоз, гипер- и гипоосмия, гипогликемия и др.)

В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым . Например, обратимым могут быть повреждения кардиомиоцитов при кратковременной (рефлекторной) ишемии миокарда (не более 10-15 мин). Если повреждающие агенты вызывают стойкие изменения внутриклеточного гомеостаза, неустранимые при вовлечении внеклеточных и внутриклеточных защитно-компенсаторных механизмов, развиваются необратимые повреждения клеток, приводящие, как правило, к их гибели или значительному сокращению сроков жизни. В качестве примеров можно привести повреждения миокардиоцитов при длительной ишемии миокарда, клеток кожи при действии больших доз ультрафиолетовых лучей.

В зависимости от периода жизненного цикла, на который приходится действие повреждающего агента, повреждение клетки может быть митотическим и интерфазным.

Выделяют два патогенетических варианта повреждения клеток:

1. Насильственный. Развивается в случае действия на клетку патогенных факторов, интенсивность которых превышает возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

2. Цитопатический. Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях становятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки, возникающего вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, нервно-трофическое, при голодании, гиповитаминозах, недостаточности антиоксидантной системы, генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны функционально активные клетки (нейроны, кардиомиоциты).

Проявления повреждения клеток могут быть как специфическими , т.е. характерными только для какого-то конкретного болезнетворного агента, так и неспецифическими .

Специфические изменения. Примерами специфических проявлений повреждения могут служить иммунный гемолиз эритроцитов при наличии в организме специфических антиэритроцитарных антител, образование радиотоксинов при радиационном повреждении, избирательное торможение отдельных клеточных ферментов при химическом повреждении, например, подавление активности цитохромоксидазы при отравлении цианидами, угнетение холинэстеразы фосфорорганическими соединениями.

Неспецифические изменения. В то же время в поврежденных клетках наблюдаются стереотипные неспецифические изменения их жизнедеятельности, общие для действия разнообразных повреждающих агентов. Примерами неспецифических проявлений повреждения клетки являются угнетенение ферментов мембран, клеточных «насосов», нарушение энергетического обмена, обмена воды, электролитов, развитие ацидоза, изменение структуры и функции внутриклеточных органелл: митохондрий, лизосом, эндоплазматическогго ретикуллума и др.

МЕХАНИЗМЫ повреждения клетки

К наиболее важным механизмам повреждения клетки относятся:

Расстройства энергетического обеспечения клетки;

Повреждение мембран и ферментов;

Дисбаланс ионов и жидкости;

Нарушение в геноме или экспрессии генов;

Нарушение регуляции внутриклеточных процессов.

1. Расстройства энергетического обеспечения клетки . Энергоснабжение клетки может расстраиваться на этапах ресинтеза, транспорта и утилизации энергии АТФ.

Ресинтез АТФ нарушается в результате дефицита кислорода и субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, а также повреждения и разрушения митохондрий (в которых осуществляются реакции цикла Кребса и сопряжённый с фосфорилированием АДФ перенос электронов к молекулярному кислороду).

Транспорт энергии. АТФ в норме доставляется от мест ресинтеза (митохондрий) к эффекторным структурам (миофибриллам, ионным насосам и др.) с помощью АДФ-АТФ-транслоказы и креатинфосфокиназы (КФК). При повреждении этих ферментов нарушается функция эффекторных структур.

Утилизация энергии может бытьнарушена за счёт уменьшения активности АТФаз (АТФаза миозина, Na+,K+-АТФаза плазмолеммы, протонная и калиевая АТФаза, Са2+-АТФаза и др.), КФК, адениннуклеотидтрансферазы.

Таким образом, нарушение жизнедеятельности клеток может развиваться даже в условиях нормального или повышенного содержания в клетке АТФ.

Рис. 2. Механизмы нарушения энергообеспечения в повреждённой клетке

2. Повреждение клеточных мембран и ферментов . Биологические мембраны выполняют множество функций, нарушение любой из которых может привести к изменению жизнедеятельности клетки в целом и даже к ее гибели.

Повреждение клеточных мембранпроисходит за счёт следующих механизмов.

Активация гидролаз . Под влиянием патогенных факторов активность мембраносвязанных, свободных (солюбилизированных) и лизосомальных липаз, фосфолипаз, протеаз может значительно увеличиться (например, при гипоксии и ацидозе). В результате фосфолипиды и белки мембран подвергаются гидролизу. Это сопровождается значительным повышением проницаемости мембран и снижением активности ферментов.

Расстройства репарации мембран. При воздействии повреждающих факторов репаративный синтез поврежденных или утраченных мембранных макромолекул подавляется, что приводит к недостаточному восстановлению мембран.

Нарушение конформации макромолекул (их пространственной структуры) приводит к изменению физико-химического состояния клеточных мембран и их рецепторов, что приводит к потере их функций.

Разрыв мембран. Перерастяжение и разрывы мембран набухших клеток и органоидов в результате их гипергидратации (следствие значительного увеличения осмотического и онкотического давления), что обусловлено избытком в них гидрофильных молекул органических соединений (молочная и пировиноградная кислоты, альбумины, глюкоза и др.), а также ионов, накопившихся в связи с расстройствами клеточного метаболизма.

Свободнорадикальные и перекисные реакции. В норме свободнорадикальные и перекисные реакции являются необходимым звеном транспорта электронов, синтеза простагландинов и лейкотриенов, фагоцитоза, метаболизма катехоламинов и др. В то же время, свободные радикалы – это высокоактивные молекулы, способные разрушать структуры клетки.

Основным источником свободных радикалов в организме является молекулярный кислород. К кислородным радикалам относятся: NO* (монооксид азота), RO* (алкоксильный радикал), RO* 2 (пероксидный радикал), O* 2 - (супероксидный радикал), HO* 2 (гидроперекисный радикал), HO* (гидроксильный радикал).

В нормальных условиях радикалы кислорода не накапливаются в клетках. Состояние клеток, характеризующееся избыточным содержанием в них радикалов кислорода, называется окислительным стрессом. Окислительный стресс развивается тогда, когда окислительно-восстановительный гомеостаз в клетке нарушается. Этот дисбаланс может быть обусловлен гиперпродукцией активных форм кислорода или недостаточностью системы антиоксидантной защиты.

Выделяют несколько основных групп антиоксидантов:

1. ферментативные – супероксиддисмутаза, каталаза, ферменты глутатионового цикла (глутатионпероксидаза, глутатионредуктаза, глутатион-S-трансфераза);

2. неферментативные – витамин Е, коэнзим Q, флавоноиды (кверцетин, рутин, гесперетин и др.), каротиноиды, аскорбиновая кислота, SH-содержащие соединения (глутатион и др.).

Рис. 3. Общие механизмы повреждения мембран клеток

В свободнорадикальные реакции вовлекаются белки, нуклеиновые кислоты и, особенно, липиды (свободнорадикальное перекисное окисление липидов – СПОЛ).

Этапы СПОЛ : образование активных форм кислорода → генерация свободных радикалов органических и неорганических веществ → продукция перекисей и гидроперекисей липидов. При действии патогенных факторов генерация свободных радикалов и СПОЛ значительно возрастает, что усиливает повреждение клеток.

Детергентные эффекты амфифилов. В результате активации липопероксидных реакций и гидролаз в клетке накапливаются гидроперекиси липидов, свободные жирные кислоты и фосфолипиды – амфифилы (вещества, способные фиксироваться как в гидрофобной, так и в гидрофильной зоне мембран). Это ведёт к формированию обширных амфифильных кластеров (простейшие трансмембранные каналы), микроразрывам и разрушению мембран.

3. Дисбаланс ионов и воды. Дисбаланс ионов и воды в клетке развивается одновременно с расстройствами энергетического обеспечения и повреждением мембран и ферментов. В результате существенно изменяется трансмембранный перенос многих ионов. В наибольшей мере это относится к K+, Na+, Ca2+, Mg2+, Cl–, т.е. ионам, которые принимают участие в таких жизненно важных процессах, как возбуждение, проведение потенциалов действия (ПД) и др.

К проявлениям ионного и водного дисбаланса относят: изменение соотношения отдельных ионов в цитозоле; нарушение трансмембранного соотношения ионов; гипергидратация клеток; гипогидратация клеток; нарушение электрогенеза.

Изменение ионного состава (дизиония) обусловлено повреждением мембранных АТФаз и дефектами мембран. Так, вследствие нарушения работы Na+,K+-ATФазы происходит накопление в цитозоле избытка Na+ и потеря клеткой К+. Вследствие нарушения работы Na+-Ca2+-ионообменного механизма (обмен двух ионов Na+, входящих в клетку, на один ион Са2+, выходящий из неё), а также Са2+-АТФаз происходит увеличение содержания Са2+ в цитозоле. Повышение концентрации ионов Са2+ в цитоплазме вызывает контрактуру фибриллярных структур клетки (миофибрилл), активацию фосфолипазы А2, разобщение окисления и фосфорилирования.

Гипергидратация. Основная причина гипергидратации поврежденных клеток – повышение содержания ионов Na+, а также органических веществ, что сопровождается увеличением в них осмотического давления и набуханием клеток. Это сочетается с растяжением и микроразрывами мембран (например, при осмотическом гемолизе эритроцитов).

Гипогидратация клеток наблюдается, например, при лихорадке, гипертермии, полиурии, инфекции (холере, брюшном тифе, дизентерии). Эти состояния ведут к потере организмом воды, что сопровождается выходом из клеток жидкости, а также органических и неорганических водорастворимых соединений.

Нарушения электрогенеза (изменения характеристик мембранного потенциала – МП и потенциалов действия – ПД) имеют существенное значение, поскольку нередко являются одним из важных признаков повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, электроэнцефалограммы при патологии нейронов головного мозга, электромиограммы при изменениях в мышечных клетках.

Рис. 5. Дисбаланс ионов и жидкости в клетке при её повреждении

4. Нарушения в геноме или экспрессии генов. К таким нарушениям относятся:

мутации (например, мутация гена инсулина приводит к развитию сахарного диабета);

дерепрессия патогенного гена (например, дерепрессия онкогена сопровождается трансформацией нормальной клетки в опухолевую);

репрессия жизненно важного гена (например, подавление экспрессии гена фенилаланин-4-монооксигеназы обусловливает гиперфенилаланинемию и развитие умственной отсталости);

трансфекция (внедрение в геном чужеродной ДНК). Например, трансфекция ДНК вируса иммунодефицита приводит к возникновению СПИДа;

нарушения митоза (например, деление ядер эритрокариоцитов без деления цитоплазмы наблюдается при мегалобластных анемиях) и мейоза (нарушение расхождения половых хромосом ведет к формированию хромосомных болезней).

5. Нарушение регуляции внутриклеточных процессов. Механизмы нарушения регуляции внутриклеточных процессов при её повреждении включают в себя:

изменение числа рецепторов клетки к биологически активным веществам (БАВ),

изменение чувствительности рецепторов клетки к БАВ.

нарушение функции внутриклеточных посредников («мессенджеров») регуляторных воздействий.

Рецепторы клеток для БАВ (материальные субстраты чувствительности и реактивности клеток) представляют собой генетически детерминированные, лабильные, белковые структуры, осуществляющие распознавание действующего фактора с последующей трансформацией этого сигнала в адекватный ответ клетки.

В патогенезе ряда заболеваний, в том числе сердечно-сосудистых и онкологических, важное значение имеет нарушение отношений между БАВ, рецепторным аппаратом и реакциями клетки на их взаимодействие. Например, при ишемии миокарда наблюдается снижение активности фофодиэстераз, разрушающих цАМФ (внутриклеточный посредник), что приводит к нарушению формирования потенциала действия в кардиомиоцитах и является одной из возможных причин развития сердечных аритмий.

Виды клеточной гибели. некроз и апоптоз

Клетки погибают как в норме, так и в условиях патологии. Различают два принципиально разных варианта смерти клеток – некроз (гибель клетки вследствие её значительного – летального – повреждения) и апоптоз (гибель клетки в результате включения специальной программы смерти).

Некроз (греч. necros – мёртвый) – патологическая форма гибели клетки вследствие её необратимого повреждения.

Некроз является следствием прямого или опосредованного действия на клетку повреждающих факторов значительной разрушающей силы.

Основные звенья патогенеза некроза те же, что и повреждения клеток, но при развитии некроза они максимально интенсифицированы и развиваются на фоне недостаточности защитно-компенсаторных механизмов. Основным механизмом некроза является невосстанавливаемое повреждение клеточной мембраны, сопровождающееся нарушением её барьерной функции, работы ионных насосов, электролитного баланса, энергетического обмена и функции ядра. Фрагментация цитоплазматической и внутриклеточной мембран, хаотичные разрывы ДНК, высвобождение и активация лизосомальных ферментов приводят к полной дезинтеграции клетки.

Содержимое клетки попадает в окружающее тканевое пространство и подвергается фагоцитозу. Некроз распространяется на множество клеток, что ведёт к образованию некротической зоны и развитию воспалительной реакции.

Некрозу могут предшествовать периоды паранекроза и некробиоза.

Паранекроз – обратимое повреждение клетки (в клетке: помутнение цитоплазмы, вакуолизация, появление грубодисперсных осадков, увеличение проникновения в клетку различных красителей).

Некробиоз (от necros - мертвый и bios - живой) –состояние «между жизнью и смертью»; изменения в клетке, предшествующие ее смерти. При некробиозе в отличие от некроза возможно возвращение клетки в исходное состояние после устранения причины, вызвавшей некробиоз.

Апоптоз (греч. apo – отделениеи ptosis – падение, «опадание листьев») – это генетически контролируемая физиологическая форма гибели клетки. Апоптоз – это программируемая гибель клетки.

В этом принципиальное отличие апоптоза от некроза. Апоптоз является компонентом многих физиологических процессов. Биологическая роль апоптоза заключается в поддержании равновесия между процессами пролиферации и гибели клеток (т.е. поддержание внутреннего гомеостаза организма на клеточном, тканевом и системном уровнях). Апоптоз – энергозависимый процесс. Нарушение или блокада апоптоза может стать причиной патологии (опухоли, иммунодефициты, реакции иммунной аутоагрессии и др.).

Апоптоз является активным процессом саморазрушения клетки, по морфологическим и другим признакам он существенно отличается от некроза (см. табл.).

Механизм апоптоза. В ходе апоптоза выделяют четыре стадии: инициация, программирование, реализация программы, удаление погибшей клетки.

1. Стадия инициации. На этой стадии информационные сигналы воспринимаются клеточными рецепторами и передаются сигналы внутрь клетки.

Пусковыми факторами апоптозамогут быть как внешние (внеклеточные) факторы, так и внутриклеточные сигналы. Сигнал воспринимается клеткой, далее последовательно передается молекулам-посредникам (мессенджерам) различного порядка и достигает ядра, где происходит включение программы клеточного «самоубийства».

Индукторами экзогенного апоптоза являются стероидные гормоны (половые, тиреоидные, минералокортикоиды и др.), антигены, антитела, цитокины. Их действие осуществляется через ядерные рецепторы, специализированные мембранные «рецепторы смерти» (Fas, TNF-RI, TNF-RII, DR-3 и др.) и рецепторы, выполняющие иные функции, например функцию активации клетки (T-клеточный рецептор (TCR), цитокиновые рецепторы), что сопровождается развитием активационного апоптоза.

Эндогенный запуск программы апоптоза клетки возможен при лишении её ростовых факторов (IL-2, IL-3, IL-4, INF-α, колониестимулирующих факторов – гранулоцитарно-макрофагального (ГМ-КСФ), гранулоцитарного (Г-КСФ), эритропоэтина и др.), нарушении контактов с внеклеточным матриксом и другими клетками, накоплении нерепарируемых разрывов ДНК (например, при повреждении клетки вирусами, ионизирующей радиацией, ультрафиолетовым излучением и др.).

Таблица. Дифференциальные признаки некроза и апоптоза

Признаки Некроз Апоптоз
Пусковой фактор Разрушение мембраны под действием патологических факторов Деградация ДНК под действием физиологических и патологических стимулов
Распространенность Группа клеток Одиночная клетка
Биохимические изменения в клетке Активация лизосомальных ферментов Активация эндонуклеаз, фрагментирующих ДНК
Энергозависимость Нет Есть
Целостность цитоплазматической и внутриклеточных мембран Нарушена Сохранена
Морфологические изменения клетки Увеличение размеров клетки, разрыхление мембраны, набухание цитоплазмы, митохондрий, лизис ядра и гранул Уменьшение размеров клетки, уплотнение и вздутие мембраны, кариопикноз, кариорексис, маргинация хроматина, конденсация и уплотнение гранул
Воспалительный ответ Есть Нет
Элиминация гибнущей клетки Лизис клетки, фагоцитоз Фрагментация клетки, поглощение фрагментов клетки (апоптотических телец) соседними клетками и фагоцитами

2. Стадия программирования .В результате запуска апоптогенным сигналом программы активации генов-индукторов апоптоза (Р53, BAX, PIG, FAS/APO-1, IGF-BP3 и др.) и/или угнетения апоптозингибирующих генов (генов семейства BCL-2) в клетке синтезируются и активируются ферменты , способные разрушать клеточные белки (протеазы – каспазы, катепсины, кальпаины, гранзимы) и нуклеиновые кислоты (нуклеазы – Са 2+ /Мg 2+ -зависимая эндонуклеаза и др.). Основным проявлением деструктивных изменений клетки при апоптозе является деградация хроматина, основой которого служит расщепление ДНК.

3. Стадия реализации программы (исполнительная, эффекторная) заключается в гибели клетки, осуществляемой посредством активации протеаз и нуклеаз.

Непосредственными исполнителями «умертвления» клетки являются Са2+,Mg2+ - зависимые эндонуклеазы (катализируют распад нуклеиновых кислот) и эффекторные каспазы (расщепляют белки). При этом в клетке формируются и от неё отпочковываются фрагменты, содержащие остатки органелл, цитоплазмы, хроматина и цитолеммы – апоптозные тельца .

4. Стадия удаления погибшей клетки . На поверхности апоптозных телец имеются лиганды, с которыми взаимодействуют рецепторы фагоцитирующих клеток. Фагоциты обнаруживают, поглощают и разрушают апоптозные тельца. В результате содержимое разрушенной клетки не попадает в межклеточное пространство и при апоптозе отсутствует воспалительная реакция.

При различных патологических процессах в организме могут наблюдаться как ускорение, так и замедление апоптоза.

Заболевания, связанные с угнетением апоптоза : опухолевые заболевания (рак молочной железы, рак предстательной железы и др.), аутоиммунные болезни (системная красная волчанка, ревматоидный артрит и др.), вирусные инфекции (герпес, аденовирусы).

Заболевания, связанные с усилением апоптоза :нейродегенеративные заболевания (болезнь Альцгеймера, паркинсонизм, боковой амиотрофический склероз), токсические заболевания печени, гипо- и апластические анемии.

Клетка является структурно-функциональной единицей тканей и органов. В ней протекают процессы , лежащие в основе энергетического и пластического обеспечения структур и функций тканей.

Различные патогенные факторы действующие на клетку могут обусловить повреждение . Под повреждением клетки понимают такие изменения ее структуры, обмена веществ, физико-химических свойств и функций, которые ведут к нарушению жизнедеятельности.

Нередко процесс повреждения обозначают термином альтерация, что не совсем точно, поскольку alteratio переводится как изменение, отклонение и является, таким образом, более широким понятием. Однако в медицинской литературе эти термины применяются обычно как синонимы.


  1. ПРИЧИНЫ ПОВРЕЖДЕНИЯ КЛЕТОК

Повреждение клетки может быть результатом действия на нее множества патогенных факторов. Их условно подразделяют на три основные группы: физического, химического и биологического характера.

Среди факторов физического характера причинами повреждения клеток наиболее часто являются следующие:


  • механические воздействия. Они обуславливают нарушение структуры плазмолеммы и мембран субклеточных образований;

  • колебания температуры. Повышенная температура среды, в которой находится клетка, до 45-50С и более, может привести к денатурации белка, нуклеиновых кислот, декомпозиции липопротеидных комплексов, повышению проницаемости клеточных мембран и другим изменениям. Значительное снижение температуры может обусловить существенное замедление или необратимое прекращение метаболических процессов в клетке, кристаллизацию внутриклеточной жидкости и разрыв мембран;

  • изменения осмотического давления в клетке, в частности, вследствие накопления в ней продуктов неполного окисления органических субстратов, а также избытка ионов. Последнее, как правило, сопровождается током жидкости в клетку по градиенту осмотического давления, набуханием ее и растяжением (вплоть до разрыва) ее плазмолеммы и мембран органелл. Снижение внутриклеточного осмотического давления или повышение его во внеклеточной среде ведет к потере клеткой жидкости, ее сморщиванию (пикнозу) и нередко к гибели;

  • воздействие ионизирующей радиации, обусловливающей образование свободных радикалов и активацию перекисных свободно-радикальных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток. Патогенное действие на клетку могут также оказывать гравитационные, электромагнитные и другие факторы физического характера.
Повреждение клеток нередко вызывают воздействия факторов химической природы . К их числу относятся разнообразные вещества экзогенного и эндогенного происхождения: органические кислоты, щелочи, соли тяжелых металлов, продукты нарушенного метаболизма. Так, цианиды подавляют активность цитохромоксидазы. Этанол и его метаболиты ингибируют многие ферменты клетки. Вещества, содержащие соли мышьяка, угнетают пируватоксидазу. Неправильное применение лекарственных средств также может привести к повреждению клеток. Например, передозировка строфантина обусловливает значительное подавление активности К + - Na + - АТФазы сарколеммы клеток миокарда, что ведет к дисбалансу интрацеллюлярного содержания ионов и жидкости.

Важно, что повреждение клетки может быть обусловлено как избытком, так и дефицитом одного и того же фактора. Например, избыточное содержание кислорода в тканях активирует процесс перекисного свободнорадикального окисления липидов (ПСОЛ), продукты которого повреждают ферменты и мембраны клеток. С другой стороны, снижение содержания кислорода обусловливает нарушение окислительных процессов, понижение образования АТФ и, как следствие, расстройство функций клетки.

Повреждение клеток нередко обусловливается факторами иммунных и аллергических процессов. Они могут быть вызваны, в частности, сходством антигенов, например, микробов и клеток организма.

Повреждение может быть также результатом образования антител или Т-лимфоцитов, действующих против неизменных клеток организма вследствие мутаций в гемоне В- или Т-лимфоцитов иммунной системы.

Важную роль в поддержании метаболических процессов в клетке играют вещества, поступающие в нее из окончаний нейронов, в частности нейромедиаторы, трофогены, нейропептиды. Уменьшение или прекращение их транспорта является причиной расстройства обмена веществ в клетках, нарушения их жизнедеятельности и развития патологических состояний, получивших название нейродистрофий.

Кроме указанных факторов, повреждение клеток нередко бывает обусловлено значительно повышенной функцией органов и тканей. Например, при длительной чрезмерной физической нагрузке возможно развитие сердечной недостаточности в результате нарушения жизнедеятельности кардиомиоцитов.

Повреждение клетки может быть результатом действия не только патогенных факторов, но и следствием генетически запрограммированных процессов. Примером может служить гибель эпидермиса, эпителия кишечника, эритроцитов и других клеток в результате процесса их старения. К механизмам старения и смерти клетки относят постепенное необратимое изменение структуры мембран, ферментов, нуклеиновых кислот, истощение субстратов метаболических реакций, снижение устойчивости клеток к патогенным воздействиям.

По происхождению все причинные факторы повреждения клетки делят на: 1) экзогенные и эндогенные; 2) инфекционного и неинфекционного генеза.

Действие повреждающих факторов на клетку осуществляется прямо или опосредовано . В последнем случае речь идет о формировании цепи вторичных реакций, образовании веществ – посредников, реализующих повреждающее действие. Действие повреждающего агента может опосредоваться через: - изменения нервных или эндокринных воздействий на клетки (например, при стрессе, шоке); - расстройство системного кровообращения (при сердечной недостаточности); - отклонение физико-химических параметров (при состояниях, сопровождающихся ацидозом, алкалозом, образованием свободных радикалов, продуктов ПСОЛ, дисбалансом ионов и жидкости); - иммунно-алллергические реакции при аутоаллергических заболеваниях; - образование избытка или недостатка биологически активных веществ (гистамина, кининов, простакландинов). Многие из этих и других соединений, участвующих в развитии патологических процессов, получили название посредников – медиаторов (например, медиаторы воспаления, аллергии, канцерогенеза и др.).


II. ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК
На уровне клетки повреждающие факторы “включают” несколько патогенетических звеньев. К их числу относят:

  • расстройство процессов энергетического обеспечения клеток;

  • повреждение мембран и ферментных систем;

  • дисбаланс ионов и жидкости;

  • нарушение генетической программы и/или ее реализации;

  • расстройство механизмов регуляции функции клеток.
1. Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, транспорта, а также утилизации его энергии.

Синтез АТФ может быть нарушен в результате дефицита кислорода и/или субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, повреждения и разрушения митохондрий, в которых осуществляются реакции цикла Кребса и перенос электронов к молекулярному кислороду, сопряженный с фосфорилированием АДФ.

Известно, что доставка энергии АТФ от мест ее синтеза – из митохондрий и гиалоплазмы – к эффекторным структурам (миофибриллам, мембранным ионным “насосам” и др.) осуществляется с помощью ферментных систем: АДФ – АТФ – транслоказы (адениннуклеотидтрансферазы) и креатинфосфокиназы (КФК). Адениннуклеотидтрансфераза обеспечивает транспорт энергии макроэргической фосфатной связи АТФ из матрикса митохондрий через их внутреннюю мембрану, а КФК переносит ее далее на креатин с образованием креатинфосфата, который поступает в цитозоль. Креатинфосфокиназа эффекторных клеточных структур транспортиует фосфатную группу креатинфосфата на АДФ с образованием АТФ , который и используется в процессе жизнедеятельности клетки. Ферментные системы транспорта энергии могут быть повреждены различными патогенными агентами, в связи с чем даже на фоне высокого общего содержания АТФ в клетке может развиваться его дефицит в энергорасходующих структурах.

Нарушение энергообеспечения клеток и расстройства их жизнедеятельности может развиваться и в условиях достаточной продукции и нормального транспорта энергии АТФ. Это может быть результатом повреждения ферментных механизмов утилизации энергии, главным образом за счет снижения активности АТФазы (АТФазы актомиозина, К + - Na + - зависимой АТФазы плазмолеммы, Mg 2+ - зависимой АТФазы “кальциевой помпы” саркоплазматического ретикулума и др.).

Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем, баланса ионов и жидкости, а также механизмов регуляции клетки.

2. Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, сто основные свойства клетки в существенной мере зависит от состояния ее мембран и связанных с ними или свободных энзимов.

а). Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация свободнорадикальных реакций (СРР) и ПСОЛ. Эти реакции протекают в клетках и в норме, являясь необходимым звеном таких жизненноважных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и созревание клеток, фагоцитоз, метаболизм катехоламинов и др. ПСОЛ участвует в процессах регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на энзимы, так и опосредованного – через изменение состояния мембран, с которыми ассоциированы многие ферменты.

Интенсивность ПСОЛ регулируются соотношением факторов, активирующих (прооксиданты) и подавляющих (антиоксиданты) этот процесс. К числу наиболее активных прооксидантов относятся легко окисляющиеся соединения, индуцирующие свободные радикалы, в частности, нафтохиноны, витамины А и Д, восстановителя – НАДФН 2 , НАДН 2 , липоевая кислота, продукты метаболизма простагландинов и катехоламинов.

Процесс ПСОЛ условно можно разделить на три этапа: 1) кислордной иницикации (“кислородный” этап), 2) образования свободных радикалов органических и неорганических агентов (“свободнорадикальный” этап), 3) продукции перекисей липидов (“перекисный” этап). Инициальным звеном свободнорадикальных перекисных реакций при повреждении клетки является, как правило, образование в процессе оксигеназных реакций так называемых активных форм кислорода: супероксидного радикала кислорода (О 2 - .), гидроксильного радикала (ОН.), перекиси водорода (Н 2 О 2), которые взаимодействуют с компонентами структур клеток, главным образом с липидами, белками и нуклеиновыми кислотами. В результате образуются активные радикалы, в частности, липидов, а также их перекиси. При этом может приобрести цепной “лавинообразный” характер.

Однако это происходит не всегда. В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Одним из таких процессов является взаимодействие радикалов и гидроперекисей липидов между собой, что ведет к образованию “нерадикальных” соединений. Ведущую роль в системе антиоксидантной защите клеток играют механизмы ферментной, а также не ферментной природы.


и ее

некоторые факторы:


Звенья антиоксидантной системы

Факторы

Механизмы действия

1

2

3

I. “Антикислородное”

Ретинол, каротиноиды, рибофлавин

Уменьшение содержания О 2 в клетке, например, путем активации его утилизации, повышения сопряжения процессов окисления и фосфорилирования.

1

2

3

II. “Антирадикальное”

супероксиддисмутаза, токоферолы, маннитол

Перевод активных радикалов в “нерадикальные” соединения, “гашение” свободных радикалов органическими соединениями.

III. “Антиперекисное”

Глютатионпероксидазы, каталазы, серотинин

Инактивация гидроперекисей лиидов, например, при их восстановлении.

Исследование последних лет показали, что чрезмерная активация свободнорадикальных и перекисных реакция является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране – т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПСОЛ. Указанные процессы, в сою очередь , обуславливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения неравного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

б). Активация гидролаз (лизосомальных, мембраносвязанных и свободных).

В норме состав и состояние мембран и ферментов модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

в). Внедрение амфифильных соединений в липидную фазу мембран.

В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфотидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих – как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи – означает “оба”, “два”). При сравнительно небольшом уровне в клетке амфифильных соединений они, внедряясь в биомембраны изменяют нормальную последовательность глицерофосфолипидов, нарушают структуру липопротеидных комплексов, увеличивают пронацаемость, а также меняют конфигурацию мембран в связи с “клинообразной” формой липидных мицелл. Накопление в большом количестве амфифилов сопровождается массированным внедрением их в мембраны, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

3. Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненноважных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

а). Изменение трансмембранного соотношения ионов. Как правило, дисбаланс ионов проявляется накоплением в клетке натрия и потерей калия.

Следствием дисбаланса является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнфецалограммы при нарушении структуры и функций нейронов головного мозга.

б). Гипер- и дегидратацияклеток.

Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Он проявляется либо гипергадратацией (уменьшением содержания жидкости) клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжением и нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

4. Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и /или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, депрессия патогенных генов (например, онкогенов), подавление активности жизненноважных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки).

Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы , главным образом, в процессе клеточного деления при митозе или мейозе.

5. Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:


  • на уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки;

  • на уровне клеточных т.н. “вторых посредников” (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующих в ответ на действие “первых посредников” – гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

  • на уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

III. ОСНОВНЫЕ ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЙ КЛЕТКИ


1. Дистрофии . Под дистрофиями (dys – нарушение, расстройство, trophe- питаю) понимают нарушения обмена веществ в клетках и тканях, сопровождающиеся расстройствами их функций, пластических проявлений, а также структурными изменениями, ведущими к нарушению их жизнедеятельности.

Основными механизмами дистрофий являются: - синтез аномальных веществ в клетке, например, белково-полисахаридного комплекса амилоида; избуточная трнасформация одних соединений в другие, нарпример, жиров и углеводов в белки, углеводов в жиры; - декомпозиция (фанероз), например, белково-липидных комплексов мембран; - инфильтрация клеток и межклеточного вещества, органическими и неорганическими соединениями, например, холестерином и его эфирами стенок артерий при атеросклерозе.

К числу основных клеточных дистрофий относят белковые (диспротеинозы), жировые (липидозы), углеводные и минеральные.

2. Дисплазии (dys – нарушение, расстройство, plaseo- образую) представляют собой нарушение процесса развития клеток, проявляющееся стойким изменением их структуры и функции, что ведет к расстройству их жизнедеятельности.

Причиной дисплазии является повреждение генома клетки. Именно это обусловливает стойкие и, как правило, наследуемые от клетки к клетке изменения, в отличие от дистрофий, которые нередко носят временный, обратимый характер и могут устраниться при прекращении: действия причинного фактора.

Основным механизмом дисплазий является расстройство процесса дифференцировки, который заключается в формировании структурной и функциональной специализации клетки. Структурными признаками дисплазий являются изменения величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму (“клетки-монстры”), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов. В качестве примеров дисплазий клеток можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при патологии гемоглобина, крупных нейронов – “монстров” при поражении коры головного мозга (туберозный склероз), многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе Реклингхаузена. Клеточные дисплазии являются одним из проявлений атипизма опухолевых клеток.


  1. Изменение структуры и функций клеточных органелл при повреждении клетки.
Повреждение клетки характеризуется большим или меньшим нарушением структуры и функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаками повреждения тех или иных органелл.

При действии патогенных факторов отмечается изменение общего числа митохондрий, а также структуры отдельных органелл. Уменьшение числа митохондрий по отношению к общей массе клетки. Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий является уменьшение или увеличение их размеров и формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления)сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембраны, фрагментации и гомогенизации крист. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов внутри клетки.

Ядро . Повреждение ядра сочетается с изменением его формы, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двуконтурности или разрывами ядерной оболочки, слиянием ее с полоской маргинации хроматина.

Лизосомы . При патогенных воздействиях высвобождения и активация ферментов лизосом может привести к “самоперевариванию” (аутолизу) клетки. Выход лизосомальных гидролаз в цитоплазму может быть обусловлен механическими разрывами их мембраны или значительным повышением проницаемости последних. Это является следствием накопления в клетках ионов водорода (внутриклеточный ацидоз), продуктов ПОЛ, токсинов и других агентов.

Рибосомы . При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), состоящих обычно из нескольких рибосом – “мономеров”, уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопровождаются снижением интенсивности процесса синтеза белка в клетке.

Эндоплазматическая сеть . При повреждении отмечается расширение канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости, очаговая деструкция мембран канальцев сети, их фрагментации.

Аппарат Гольджи . Повреждение аппарата Гольджи сопровождается структурными изменениями, сходными с таковыми в эндоплазматической сети . При этом нарушается выведение из клетки продуктов жизнедеятельности, обусловливающее расстройство ее функции в целом.

Цитоплазма представляет собой жидкую, слабовязкую среду, в которой находятся органеллы и включения клети. Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в цитоплазме жидкости, протеолиз или коакуляцию белка, образование “включений”, не встречающихся в норме. Изменение состояния цитоплазмы, в свою очередь, существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе, на функцию органелл, на процессы восприятия регулирующих и других влияний на клетку.


  1. Некроз и аутолиз .
Некроз (гр. necro – мертвый) – гибель клеток и тканей, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу называют некробиозом или патобиозом. Примерами патобиоза могут служить процессы омертвления тканей при нейро-трофических расстройствах в результате денервации тканей, вследствие длительной венозной гипереми или ишемии. Некробиотические процессы протекают и в норме, являясь завершающим этапом жизненного цикла многих клеток. Большинствопогибших клеток подвергаются аутолизу, т.е. саморазрушению структур.

Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках.

ПОВРЕЖДЕНИЯ. НЕКРОЗ. АПОПТОЗ
Под воздействием избыточных физиологических, а также пато-логических стимулов в клетках развивается процесс адаптации ,


в результате которого они достигают устойчивого состояния, позво-ляющего приспособиться к новым условиям. Если лимиты адапта-ционного ответа клетки исчерпаны, а адаптация невозможна, насту-пает повреждение клетки . До определенного предела повреждение клетки обратимо. Однако, если неблагоприятный фактор действует постоянно или его интенсивность очень велика, наступает необра-тимое повреждение клетки и ее смерть (схема 2.1).
Смерть клетки -конечный результат ее повреждения, наиболее распространенное событие в патологии, сопровождающее существо-вание любого типа клетки, главное следствие ишемии (местного малокровия ткани), инфекции, интоксикации, иммунных реакций. Это естественное событие в процессе нормального эмбриогенеза, развития лимфоидной ткани, инволюции органа под действием гор-монов , а также желанный результат при радиотерапии и химиоте-рапии рака.

Повреждение и гибель клетки

Схема 2.1.

Воздействие

Повышенная

Обратимое повреждение

клетки

Продолжающееся

воздействие

Сильное

Адаптация

Среднее

Гипертрофия

Атрофия

Необратимое

Метаплазия

повреждение

Гиперплазия

Дисплазия

клетки

Прекращение

воздействия

Нормальная

Некроз

клетка

Ге н е т и ч е с к и е п о в р е ж д е н и я клеток могут быть следст-вием, как правило, врожденных пороков развития, например, болезни Дауна. Многие врожденные нарушения метаболизма связаны с эн-зимопатиями.
Д и с б а л а н с п и т а н и я нередко является основной причи-ной повреждения клеток. Дефицит белковой пищи, специфичес-ких витаминов остаются распространенным явлением во многих странах.
Механизмы повреждения клеток. Молекулярные механизмы повреждения клеток , приводящие к их смерти, очень сложны. Так же, как существует много причин повреждения клеток, так и нет общего единого механизма их смерти.
Хотя точку приложения повреждающего агента не всегда удается определить, известны четыре наиболее чувствительные внутрикле-точные системы. Во-первых, это поддержание целостности клеточ-ных мембран, от чего зависит ионный и осмотический гомеостаз клетки и ее органелл, во-вторых, аэробное дыхание, включающее окислительное фосфорилирование и образование АТФ, в-третьих, синтез ферментов и структурных белков, в-четвертых, сохранение генетического аппарата клетки.
Структурные и биохимические элементы клетки настолько тесно связаны, что повреждение в одном месте приводит к обширным вто-ричным эффектам. Например, нарушение аэробного дыхания повреждает натриевый насос, который поддерживает ионно-жидко-стный баланс, что, в свою очередь, вызывает нарушение внутрикле-точного содержания ионов и воды.
Морфологические изменения выявляются только после того, когда нарушения биологической системы клетки проходят некий критический уровень. Причем, развитие морфологических призна-ков смертельного повреждения клетки занимает больше времени , чем появление обратимых изменений. Например, набухание клетки обратимо и может развиться в течение нескольких минут. Однако достоверные светооптические изменения, свидетельствующие о смерти клетки, обнаруживаются в миокарде лишь через 10-12 ч после тотальной ишемии, хотя и известно, что необратимые повреж-дения наступают уже через 20-60 мин. Естественно, ультраструк-турные повреждения будут видны раньше, чем светооптические.
Реакция клеток на повреждающие воздействия зависит от типа, продолжительности и тяжести последних. Так, малые дозы токсинов или непродолжительная ишемия могут вызвать обратимые измене-ния, тогда как большие дозы того же токсина и продолжительная
ишемия приводят к немедленной гибели клетки или медленному необратимому повреждению, приводящему к клеточной смерти.
Тип, состояние и приспособляемость клетки также влияют на последствия ее повреждения. Для ответа клетки на повреждение важны ее гормональный статус, характер питания и метаболические потребности. Поперечнополосатая мышца голени в покое, напри-мер, может обойтись без кровоснабжения, а сердечная мышца - нет. Одни и те же концентрации токсина , например, четыреххлористого углерода, могут быть безопасными для одного индивидуума, но при-водят к гибели клеток печени у другого, что объясняется содержанием

  • печени ферментов, расщепляющих четыреххлористый углерод до нетоксичных продуктов.

Механизмы действия многих агентов хорошо известны. Ряд токси-нов вызывает повреждение клеток, воздействуя на эндогенные субст-раты или ферменты. При этом особенно чувствительными являются гликолиз, цикл лимонной кислоты и окислительное фосфорилирова-ние на внутренних мембранах митохондрий. Цианид, например, инак-тивирует цитохромоксидазу, а флуороацетат препятствует реализации цикла лимонной кислоты, что приводит к истощению АТФ. Некото-рые анаэробные бактерии, такие как Clostridium perfringens, вырабаты-вают фосфолипазы, атакующие фосфолипиды клеточных мембран.
Наиболее важными для развития повреждения и смерти клетки считают четыре механизма. Во-первых, в основе повреждения клет-ки при ишемии лежит отсутствие кислорода. При недостаточном поступлении кислорода в ткани образуются его свободные радикалы, вызывающие перекисное окисление липидов, что оказывает разру-шительное действие на клетки.
Во-вторых, особую роль в повреждении клетки имеет нарушение гомеостаза кальция. Свободный кальций присутствует в цитозоле


  • исключительно низких концентрациях по сравнению с таковым вне клетки. Это состояние поддерживается связанными с клеточной

мембраной энергозависимыми Са 2+ и Мg 2+ - АТФазами. Ишемия и некоторые токсины вызывают увеличение концентрации кальция


В-третьих, потеря митохондриями пиридин-нуклеотидов и после-дующее истощение АТФ, а также снижение синтеза АТФ являются характерными как для ишемического, так и токсического поврежде-ния клеток. Высокоэнергетические фосфаты в форме АТФ необхо-димы для многих процессов синтеза и расщепления, происходящих в клетках. К этим процессам относятся мембранный транспорт, син-тез белка, липогенез и реакции деацилирования-реацилирования, необходимые для фосфолипидного обмена (ацилирование - введе-ние в молекулы остатка карбоновых кислот). Имеется достаточно данных о том, что истощение АТФ играет важную роль в потере целостности плазмолеммы, что характерно для смерти клетки.
В-четвертых, ранняя потеря избирательной проницаемости плазматической мембраной - постоянный признак всех видов по-вреждения клеток. Такие дефекты могут возникать из-за потери АТФ и активации фосфолипаз. Кроме того, плазматическая мембрана мо-жет быть повреждена в результате прямого действия некоторых бак-териальных токсинов, вирусных белков, компонентов комплемента, веществ из лизированных лимфоцитов (перфоринов), а также ряда физических и химических агентов.

Повреждение клетки - типический патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, приводящие к нарушению структурной целостности клетки и ее функциональных способностей после удаления повреждающего агента. Так, например, на первом этапе нарушение функционирования клетки, вызванное действием неблагоприятных факторов, например недостатком кислорода или действием токсических соединений, может и не привести к повреждению клетки: как только восстановятся нормальные окружающие условия, клетка вновь вернется в состояние, близкое к исходному. Например, если в каком-нибудь участке миокарда кровоснабжение прекращается на короткий промежуток времени (не более 10-15 мин), а затем восстанавливается, то кардиомиоциты сохраняют способность к регенерации и нормальному функционированию. Если кровоснабжение не восстанавливается, то повреждение миокарда становится необратимым и кардиомиоциты на этом участке погибают.

Различают непосредственное (первичное) и опосредованное (вторичное) повреждения. Последнее возникает как следствие первичных нарушений постоянства внутренней среды организма.

В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим.

Острое повреждение развивается быстро, как правило, в результате однократного, но интенсивного повреждающего воздействия, в то время как хроническое повреждение протекает медленно и является следствием многократных, но менее интенсивных патогенных влияний.

В зависимости от периода жизненного цикла, на который приходится действие повреждающего агента, повреждение клетки может быть митотическим и интерфазным.

В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым (см. выше).

Выделяют два патогенетических варианта повреждения клеток:

1. Насильственный. Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

2. Цитопатический. Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях становятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки, возникающего вследствие отсутствия какихлибо необходимых ей компонентов (гипоксическое, нервнотрофическое, при голодании, гиповитаминозах, недостаточности антиоксидантной системы, генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, реактивность, а следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, кардиомиоциты).

Причинами повреждения клеток могут быть следующие факторы: гипоксия. Чрезвычайно важная и распространенная причина повреждения клеток. Уменьшение кровообращения (ишемия), возникающее при атеросклерозе, тромбозе, сдавлении артерий, является основной причиной гипоксии. Другой причиной может быть недостаточная оксигенация крови при сердечно-сосудистой или легочной патологии. Третьей причиной может являться нарушение транспорта кислорода, например при анемии, отравлении окисью углерода или действии метгемоглобинобразователей (нитраты и нитриты, хлорноватые и хлорноватистые соли, феррицианиды, лекарственные вещества - фенацетин, амидопирин, сульфаниламиды и др.) (подробнее см. раздел 16.2);

Физические агенты - механическая травма, температурные воздействия, колебания барометрического давления, ионизирующая и ультрафиолетовая радиация, электрический ток;

Химические агенты и лекарства. Повреждение клеток может быть вызвано как жизненно необходимыми химическими соединениями, такими, как, например, глюкоза или поваренная соль в гипертонических концентрациях, кислород в высоких концентрациях. Вещества, известные как яды (в частности, мышьяк, цианиды, соли ртути), могут вызывать гибель клеток в считанные минуты или часы. Гибель клеток может наступать при действии факторов внешней среды, «социальных» факторов - алкоголя, курения, наркотиков и др.;

Иммунологические реакции. Хотя иммунные реакции защищают организм от воздействия биологических агентов, в ряде случаев (аллергия, аутоиммунные реакции) они могут обусловливать повреждение клеток;

Генетические повреждения (например, наследственные мембранопатии, энзимопатии и др.);

Дисбаланс питания.

Первое событие, которое в конце концов приводит к повреждению клетки, - это взаимодействие повреждающего агента с мишенями-молекулами (табл. 3-1). Так, мишенями для ультрафиолетовых лучей могут быть ароматические группы белков, ферментов и рецепторов или нуклеотиды в молекулах ДНК и РНК. Мишенью для окиси углерода служат различные гемсодержащие ферменты. Мишенью при действии гипоксии оказываются митохондрии, которые перестают запасать энергию в форме АТФ, и т.д.

Таблица 3-1. Примеры повреждающих агентов, действующих на клетку

Окончание табл. 3-1

* Увеличение разницы потенциалов между наружной и внутренней поверхностью клеточной мембраны.

Взаимодействие повреждающего фактора c мишенью может приводить к повреждению самой мишени, что наблюдается, например, при действии ультрафиолетовых лучей на клетки. В других случаях мишень не повреждается действующим агентом, но временно перестает функционировать. Именно это приводит в конечном счете к повреждению клетки в целом. Например, при действии цианистого калия выключается функция цитохромоксидазы, которая в данном случае служит мишенью для яда. Но фермент не повреждается: если удалить цианид из окружающей среды, функция цитохромоксидазы восстановится. Причиной гибели клетки является последующее повреждение клеточных структур, вызванное длительным прекращением энергообеспечения.

Таким образом, между моментом взаимодействия повреждающего агента с мишенью и процессом повреждения определенных клеточных структур может произойти целая цепь последовательных событий.

Гибель клетки - это конечный результат ее повреждения. Существует два основных типа клеточной гибели - некроз и апоптоз. На сегодняшний день выделяют также третий тип смерти клеток - конечное дифференцирование, который, по мнению большинства современных ученых, является одной из форм апоптоза.

Некроз (от греч. nekros - мертвый) - это патологическая форма гибели клетки вследствие ее необратимого химического или физического повреждения (высокая и низкая температура, органические растворители, гипоксия, отравление, гипотонический шок, ионизирующее излучение и др.). Некроз представляет собой спектр морфологических изменений, являющихся результатом разрушающего действия ферментов на поврежденную клетку. Развивается два конкурирующих процесса: ферментативное переваривание клетки

(колликвационный, разжижающий некроз) и денатурация белков (коагуляционный некроз). Для проявления обоих этих процессов требуется несколько часов, поэтому в случае внезапной смерти, например, при инфаркте миокарда соответствующие морфологические изменения просто не успевают развиться. Этот вид гибели клеток генетически не контролируется.

Некрозу могут предшествовать периоды паранекроза и некробиоза.

Паранекроз - заметные, но обратимые изменения в клетке: помутнение цитоплазмы, вакуолизация, появление грубодисперсных осадков, увеличение проникновения в клетку различных красителей.

Некробиоз - состояние «между жизнью и смертью» (от necros - мертвый и bios - живой); изменения в клетке, предшествующие ее смерти. При некробиозе в отличие от некроза возможно возвращение клетки в исходное состояние после устранения причины, вызвавшей некробиоз.

Если некроз считается патологической формой клеточной гибели, возникающей в результате чрезмерного (резкого, сильного) повреждающего воздействия на клетку, то апоптоз противопоставляется ему как контролируемый процесс самоуничтожения клетки.

Апоптоз (от греч. аро - отделение и ptosis - падение) - это генетически контролируемая физиологическая форма гибели клетки. Биологическое значение апоптоза заключается в поддержании внутреннего гомеостаза организма на клеточном, тканевом и системном уровнях. Апоптоз ответствен за многочисленные физиологические и патологические процессы в организме:

1. Программированное разрушение клеток на стадии эмбриогенеза (автономный апоптоз). Различают три категории автономного апоптоза: морфогенетический, гистогенетический и филогенетический.

Морфогенетический апоптоз участвует в разрушении различных тканевых зачатков, что обеспечивается:

Гибелью клеток в межпальцевых промежутках;

Гибелью клеток «избыточного» эпителия при слиянии нёбных отростков, когда формируется твердое нёбо;

Гибелью клеток в дорсальной части нервной трубки во время смыкания, что необходимо для достижения единства эпителия двух сторон нервной трубки и связанной с ними мезодермы.

Нарушение морфогенетического апоптоза в этих трех локализациях приводит, соответственно, к развитию синдактилии, расщеплению твердого нёба и spina bifida.

Гистогенетический апоптоз имеет место при дифференцировке тканей и органов, например, при гормонально-зависимой дифференцировке половых органов из тканевых зачатков. Так, клетками Сертоли в яичках плода мужского пола синтезируется гормон, который вызывает путем апоптоза регрессию протоков Мюллера, из которых у женщин формируются маточные трубы, матка и верхняя часть влагалища.

Филогенетический апоптоз участвует в удалении рудиментарных структур у эмбриона, например пронефроса.

2. Гормонозависимая инволюция органов у взрослых, например отторжение клеток эндометрия во время менструального цикла, атрезия фолликулов в яичниках в менопаузе, регрессия молочной железы после прекращения лактации.

3. Стабилизация численности клеток и их популяций в активно пролиферирующих тканях, например клеток эпителия кишечника, крови и иммунной системы; удаление стареющих клеток, прошедших свой жизненный цикл.

4. Элиминация части опухолевых клеток во время спонтанной регрессии опухолей.

5. Гибель клеток иммунной системы (В- и Т-лимфоцитов) при гипосекреции цитокинов, аутореактивных Т-клеток в тимусе - при их клональной делеции.

6. Патологическая атрофия гормонозависимых органов, например атрофия предстательной железы после кастрации; истощение лимфоцитов в тимусе на фоне терапии глюкокортикоидами.

7. Патологическая атрофия паренхиматозных органов после обтурации выводящих протоков, например, в поджелудочной и слюнных железах, почках.

8. Гибель клеток, вызванная действием цитотоксических Т-лимфоцитов, в частности при отторжении трансплантата и болезни «трансплантат против хозяина».

9. Элиминация клеток, инфицированных вирусами (например, при вирусном гепатите фрагменты апоптотических клеток обнаруживаются в печени в виде телец Каунсильмана).

10. Элиминация поврежденных клеток при действии химических и физических факторов (высокая и низкая температура,

ионизирующее излучение, противоопухолевые препараты и др.) в дозе, недостаточной для развития некроза.

Апоптоз является активным процессом саморазрушения клетки, по морфологическим и другим признакам он существенно отличается от некроза (см. табл. 3-2). Наиболее характерные проявления апоптоза определяются тем, что первые события, связанные с его осуществлением, начинаются в ядре. К ним относятся конденсация хроматина с формированием скоплений (в виде ленты, комочков), прилежащих к ядерной мембране (маргинация хроматина), и появление вдавлений ядерной мембраны, приводящих к фрагментации ядра (кариорексису) и образованию апоптотических телец - внеклеточных фрагментов ядра, окруженных мембраной. В цитоплазме происходит конденсация и сморщивание гранул. Клеточная мембрана утрачивает ворсинчатость, образует пузыревидные вздутия, на ней экспрессируются различные молекулы, распознаваемые фагоцитами (фосфатидилсерин, тромбоспондин, десиалированные мембранные гликоконъюгаты). От поверхности апоптотической клетки отщепляются небольшие везикулы, наполненные содержимым цитоплазмы (митохондрии, рибосомы и др.) и окруженные мембранным липидным бислоем. Клетка постепенно уменьшается в объеме, округляется и теряет межклеточные контакты. Апоптотические клетки и их фрагменты (апоптотические тельца, везикулы) поглощаются макрофагами, нейтрофилами и другими соседними клетками, не являющимися «профессиональными» фагоцитами. В результате эндоцитоза содержимое апоптотических клеток не выделяется в межклеточное пространство, как это происходит при некрозе, при котором вокруг гибнущих клеток скапливаются их активные внутриклеточные компоненты, включая энзимы, закисляется среда, что способствует повреждению соседних клеток и развитию воспалительной реакции, т.е. апоптоз одиночной клетки не отражается на ее окружении.

Признаки Некроз Апоптоз
Пусковой фактор Разрушение мембраны под действием патологических стимулов Деградация ДНК под действием физиологических и патологических стимулов
Распространенность Группа клеток Одиночная клетка
Биохимические изменения в клетке Активация лизосомальных ферментов Активация эндонуклеаз, фрагментирующих ДНК
Энергозависимость Нет Есть
Целостность цитоплазматической и внутриклеточных мембран Нарушена Сохранена
Морфологические изменения клетки Увеличение размеров клетки, разрыхление мембраны, набухание (окноз) цитоплазмы, митохондрий, лизис ядра и гранул Уменьшение размеров клетки, уплотнение и вздутие мембраны, кариопикноз, кариорексис, маргинация хроматина, конденсация и уплотнение гранул
Воспалительный ответ Есть Нет
Элиминация гибнущей клетки Лизис клетки, фагоцитоз Фрагментация клетки, поглощение фрагментов клетки (мембранных везикул, апоптотических телец) соседними клетками и фагоцитами

Классическими индукторами экзогенного апоптоза являются стероидные гормоны (половые, тиреоидные, кальцитриол, минералокортикоиды, ретиноиды), антигены, антитела, митогены, цитокины (фактор некроза опухолей (TNF) α, интерлейкин (IL) 1, IL-10, интерферон (INF) γ, β-токоферол и др.). Их проапоптогенное действие осуществляется через ядерные рецепторы (например, GR - глюкокортикоидный рецептор), специализированные мембранные «рецепторы смерти» (Fas, TNF-RI, TNF-RII, DR-3, DR-5 и др.) и рецепторы, выполняющие иные функции, например функцию активации клетки (T-клеточный рецептор (TCR),

цитокиновые рецепторы), что сопровождается развитием активационного апоптоза.

Ситуация эндогенного запуска программы гибели клетки возможна при лишении ее ростовых факторов (IL-2, IL-3, IL-4, INF-α, колониестимулирующих факторов - гранулоцитарно-макрофагального (ГМ-КСФ), гранулоцитарного (Г-КСФ), эритропоэтина и др.), нарушении контактов с внеклеточным матриксом и другими клетками, накоплении нерепарируемых разрывов ДНК (например, при повреждении клетки вирусами, ионизирующей радиацией, ультрафиолетовым излучением, токсинами и др.). В последнем случае важная роль отводится ядерному белку р53 (см. ниже).

В результате запуска апоптогенным (экзогенным или эндогенным) сигналом программы активации генов-индукторов апоптоза (Р53, BAX, PIG, FAS/APO-1, IGF-BP3 и др.) и/или угнетения апоптозингибирующих генов (генов семейства BCL-2) в клетке изменяется набор внутриклеточных РНК и белков, синтезируются и активируются ферменты, способные разрушать клеточные белки (протеазы - каспазы, катепсины, кальпаины, гранзимы) и нуклеиновые кислоты (нуклеазы - Са 2+ /Мg 2+ -зависимая эндонуклеаза и др.). Основным проявлением деструктивных изменений клетки при апоптозе является деградация хроматина, основой которого служит расщепление ДНК.

В настоящее время выделены несколько основных механизмов реализации апоптоза:

1) Рецепторный. Осуществляется с помощью «рецепторов смерти» (см. выше) при активирующем взаимодействии с соответствующими лигандами, большинство из которых относится к суперсемейству фактора некроза опухолей. Взаимодействие рецептора с лигандом приводит к активации адапторных белков, ассоциированных с «доменами смерти» (FADD - Fas-associated death domain, TRADD - TNF-R-associated death domain), и прокаспазы 8, продукт которой - каспаза 8 (инициаторная) активирует каспазу 3 (эффекторную), что, в свою очередь, обусловливает активацию эндонуклеаз, фрагментирующих ДНК.

2) Митохондриальный. Участие митохондрий в апоптозе обеспечивается присутствием в их матриксе и межмембранном пространстве большого количества биологически активных веществ (цитохрома С (Cyt С); прокаспаз 2, 3, 9; апоптозиндуцирующего фактора (AIF), обладающих выраженным апоптогенным действием. Фактором активации апоптоза является выход данных веществ

в цитоплазму при снижении трансмембранного потенциала митохондрий вследствие открытия гигантских митохондриальных пор (выполняют роль Ca 2 +-, рН-, потенциал-, НАДФ2Н/НАДФ+- и редоксзависимых каналов) и повышения проницаемости митохондриальных мембран. К раскрытию пор приводят истощение в клетках восстановленного глутатиона, НАДФН, АТФ и АДФ, образование активных форм кислорода, разобщение окислительного фосфорилирования, увеличение содержания Ca 2 + в цитоплазме. Поступление межмембранных белков и активация апоптоза возможны также при разрыве наружной мембраны митохондрий вследствие гиперполяризации внутренней мембраны.

3) р53-опосредованный. p53 - многофункциональный белок, играющий важную роль в мониторинге сигналов о состоянии клетки, целостности ее генома, активности систем ДНК-репарации. Повреждение ДНК ведет к накоплению белка р53 в клетке. Это определяет остановку клеточного цикла в фазах G 1 и G 2 , предотвращает репликацию, активирует синтез и репарацию ДНК, а следовательно, создает условия для восстановления нативной структуры ДНК, препятствует появлению мутантных и анеуплоидных клеток в организме. В случае если имеется недостаточность систем ДНК-репарации и повреждения ДНК сохраняются, клетка подвергается апоптозу. В частности, белок р53 способен индуцировать транскрипцию таких апоптогенных факторов, как Bax, Fas- рецептор, DR-5 и др.

4) Перфорин-гранзимовый. Цитотоксические Т-лимфоциты (Т-киллеры) вызывают апоптоз клеток-мишеней (например, инфицированных клеток) с помощью белка перфорина. Полимеризуясь, перфорин образует в цитоплазматической мембране клеткимишени трансмембранные каналы, по которым внутрь клетки поступают секретируемые Т-киллером гранзимы (фрагментины) - смесь сериновых протеаз. Основным компонентом этой смеси является гранзим В - протеолитический фермент, активирующий каспазу 3.

Важную роль в процессе передачи апоптогенного сигнала и регуляции апоптоза играют следующие внутриклеточные факторы (мессенджеры):

Концентрация ионов Ca (Ca 2 + активирует сериновые и цистеиновые протеазы, Ca 2+ /Mg 2+ -зависимую эндонуклеазу);

Протеинкиназы А (медиатор апоптоза) и С (ингибитор апоптоза);

Церамид (стимулирует киназы, фосфатазы);

Активные формы кислорода (обусловливают снижение трансмембранного потенциала митохондрий, увеличение внутриклеточной концентрации Ca 2 +, образование цАМФ);

Монооксид азота (опосредует изменение экспрессии р53, открытие гигантских пор в митохондриях и снижение митохондриального потенциала).

При различных патологических процессах в организме (инфекция, воспаление, иммунодефициты, гипо- и апластическая анемии, опухоли и др.) могут наблюдаться как ускорение, так и замедление апоптоза.

Примеры некоторых заболеваний, в патогенез которых включается апоптоз, представлены в табл. 3-3.

Таблица 3-3. Примеры заболеваний, связанных с угнетением или усилением апоптоза

Универсальный ответ клетки на повреждение. Особенностью развития патологических изменений в клетках в ответ на самые различные неблагоприятные воздействия является сходство этих изменений, которое позволило Д.Н. Насонову и В.Я. Александрову выдвинуть в 1940 г. теорию о неспецифической реакции клеток на повреждение. Ее суть сводится к следующему - каким бы ни был повреждающий агент и на какие бы клетки он ни действовал, ответ клеток по ряду показателей является одинаковым. К числу таких показателей относятся:

1) уменьшение дисперсности коллоидов цитоплазмы и ядра;

2) увеличение вязкости цитоплазмы, которому иногда предшествует ее некоторое уменьшение;

3) увеличение сродства цитоплазмы и ядра к ряду красителей. Во многих случаях обнаруживаются также набухание клетки,

изменение ионной проницаемости плазматической и внутриклеточных мембран, выход метаболитов из клетки, изменение флуоресценции, повышение кислотности цитоплазмы и т.д. Существование такого стереотипа изменений физико-химических свойств клеток при их повреждении связано с тем, что молекулярноклеточные механизмы повреждения сходны, хотя причины, вызвавшие повреждение, могут быть самыми разными. Практически у всех клеток при действии повреждающих агентов наблюдается резкое увеличение проницаемости клеточных мембран для ионов кальция. Это сопровождается активацией различных внутриклеточных ферментов и процессов: протеинкиназ, фосфолипаз, фосфодиэстеразы циклических нуклеотидов, системы биосинтеза белков и т.д. Эти изменения могут быть обратимыми, но в конце концов при сильном и длительном воздействии повреждающего фактора происходит стойкое нарушение функций клеток, а следовательно, ткани и органа в целом.