Задачи на сцепление с полом у птиц. Конспекты по генетике

Изучение закономерностей наследования признаков, сцепленных с полом, и выяснение возможностей их использования в практической деятельности человека можно проводить только на животных с ярко выраженным половым диморфизмом, имеющих характерные признаки, гены которых находятся в половой Х-хромосоме. В условиях пришкольного участка для этих целей наиболее удобно использовать кур, канареек и других животных.

План опыта с курами

Тема опыта. Закономерности наследования окраски оперения у кур.

Задачи опыта. 1. Закрепить навыки ухода за курами. 2. Установить специфику наследования признаков, гены которых находятся в половых хромосомах. 3. Выяснить возможности использования в практической деятельности человека закономерностей наследования признаков, гены которых находятся в половых хромосомах.

Выбор и содержание исходных пар. Для опыта в качестве родительских форм отобрать молодых здоровых гомозиготных птиц двух пород: с полосатым оперением (плимутрок) и с черным оперением (австралорпы, украинские черные или др.). Опыт провести в двух вариантах: 1) прямое скрещивание (куры черные´петух полосатый); 2) обратное скрещивание (куры полосатые´петух черный). В каждом варианте взять по 2-3 курицы и одному петуху. Данные о родителях записать в журнал гибридизации по следующей схеме:

Дата Родители, гибриды Пол Прямое скрещивание Обратное скрещивание
количество особей окраска оперения количество особей окраска оперения
Р Куры
Петухи
F 1 Куры
Петухи
F 2 Куры
Петухи

Для получения отобранных для опыта птиц поместить в клетки отдельно по вариантам и содержать при одинаковом уходе и кормлении (обычных для кур). Снесенные яйца учитывать, хранить и помещать для насиживания отдельно по вариантам, снабдив этикеткой, в которой указана гибридная комбинация.

Гибриды F 1 . Выращивать гибридных цыплят нужно отдельно по вариантам в обычных для кур условиях кормления и содержания. Когда цыплята достигнут половой зрелости, в каждом варианте установить окраску оперения у курочек и петушков, подсчитать количество особей с одинаковым фенотипом, данные наблюдений занести в журнал гибридизации. Для получения гибридов F 2 в каждом варианте из гибридов F 1 отобрать по 2-3 курочки и одному петушку, поместить в клетки и содержать так же, как родителей. Яйца хранить и помещать для насиживания отдельно по вариантам с этикеткой, в которой указана комбинация.



Гибриды F 2 . Выращивать цыплят из F 2 нужно отдельно по вариантам, как гибриды F 1 . Когда они достигнут половой зрелости, в каждом варианте подсчитать количество курочек и петушков, определить окраску оперения. Данные наблюдений внести в журнал гибридизации.

Анализ результатов опыта. Данные учетов проанализировать и сделать выводы о характере окраски оперения у кур.

При правильном ведении опыта в разных вариантах характер наследования окраски оперения у птиц должен быть иным. При прямом скрещивании (1-й вариант) в F 1 все курочки и петушки должны быть полосатыми. Это говорит о том, что ген полосатости доминирует над геном черной окраски. В F 2 все петушки должны быть полосатыми, а из курочек 50% полосатыми и 50% черными. При обратном скрещивании в F 1 все петушки будут черными, как мать, а курочки - полосатыми, как отец; в F 2 50% петушков и 50% курочек будут черными, а 50% -полосатыми.

Такой характер наследования говорит о том, что у кур ген, определяющий окраску оперения, находится в половой хромосоме. (У птиц гетерогаметный пол женский. Половой комплекс самки - XX , самца - XY ). Схема наследования этого признака приведена на рисунке 75.


Данные опыта использовать на уроках общей биологии в X классе при изучении сцепленного с полом наследования и в практике птицеводства, для определения пола молодых цыплят, которые, как известно, в раннем возрасте не имеют внешне заметных половых различий, а вместе с тем экономически целесообразно сразу после рождения отделить петушков и курочек и определить им различные режимы кормления и содержания, так как в дальнейшем курочки пополнят стадо несушек, а петушки будут использованы как бройлеры.

Опыт с канарейками. Сцепленное с полом наследование можно продемонстрировать и на других объектах, например на канарейках, у которых доминантный ген А , определяющий зеленое оперение, и его рецессивная аллель (а ), определяющая коричневое оперение, находятся в половой (X ) хромосоме. Скрещивание, как и у кур, провести в двух вариантах: 1) прямое скрещивание (зеленый (АА )´коричневая (ау ); 2) обратное скрещивание (коричневый (аа )´зеленая (Ау ).

Сцепленное наследование

Г. Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков.


Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался выдающийся американский генетик Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25°С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее.

Кроме того, они имеют всего 8 хромосом в диплоидном наборе и отличия по многочисленным признакам, могут размножаться в пробирках на дешевой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибридов, имеющих серое тело и нормальные крыльяи (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев - над геном недоразвитых) (рис. 327). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% серые длиннокрылые и 41,5% черные с зачаточными крыльями) и лишь незначительная часть мушек имела перекомбинированные признаки (8,5% черные длиннокрылые и 8,5% серые с зачаточными крыльями).

Анализируя полученные результаты, Морган пришел к выводу, что гены, обусловливающие развитие серой окраски тела и длинных крыльев, локализованы в одной хромосоме, а гены, обусловливающие развитие черной окраски тела и зачаточных крыльев, - в другой. Явление совместного наследования признаков Морган назвал сцеплением . Материальной основой сцепления генов является хромосома. Гены, локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления . Поскольку гомологичные хромосомы имеют одинаковый набор генов, количество групп сцепления равно гаплоидному набору хромосом (например, у человека 46 хромосом, или 23 пары гомологичных хромосом, соответственно количество групп сцепления в соматических клетках человека - 23). Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

Вернемся к нашему примеру скрещивания мушек дрозофил. Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов - АВ и ав, а отцовский - один тип - ав . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и аавв . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Аавв и ааВв . Каковы причины появления таких особей? Для объяснения этого факта необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Ав и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но поскольку кроссинговер происходит не во всех гаметах, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

В зависимости от особенностей образования гамет, различают:

некроссоверные гаметы - гаметы с хромосомами, образованными без кроссинговера:
кроссоверные гаметы - гаметы с хромосомами, претерпевшими кроссинговер:

Соответственно этому различают:

© рекомбинантные (кроссоверные ) особи - особи, возникшие с участием кроссоверных гамет;

© нерекомбинантные (некроссоверные ) особи - особи, возникшие без участия кроссоверных гамет.

Гены в хромосомах имеют разную силу сцепления. Сцепление генов может быть:

© полным , если между генами, относящимися к одной группе сцепления, рекомбинация невозможна (у самцов дрозофилы полное сцепление генов, хотя у подавляющего большинства других видов кроссинговер протекает сходно как у самцов, так и у самок);

© неполным , если между генами, относящимися к одной группе сцепления, возможна рекомбинация.

Вероятность возникновения перекреста между генами зависит от их расположения в хромосоме: чем дальше друг от друга расположены гены, тем выше вероятность перекреста между ними. За единицу расстояния между генами, находящимися в одной хромосоме, принят 1 % кроссинговера. Его величина зависит от силы сцепления между генами и соответствует проценту рекомбинантных особей от общего числа потомков, полученных при скрещивании. Например, в рассмотренном выше анализирующем скрещивании получено 17% особей с перекомбинированными признаками. Следовательно, расстояние между генами серой окраски тела и длинных крыльев (а также черной окраски тела и зачаточных крыльев) равно 17%. В честь Т. Моргана единица расстояния между генами названа морганидой .

Результатом исследований Т.Моргана стало создание им хромосомной теории наследственности:

© гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;



© каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

© гены расположены в хромосомах в определенной линейной последовательности;

© гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

© сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинатных хромосом; частота кроссинговера:

¨ является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);

¨ зависит от силы сцепления между генами: чем сильнее сцеплены гены, тем меньше величина кроссинговера (обратная зависимость);

© каждый вид имеет характерный только для него набор хромосом - кариотип.

40.4. Генетика пола

Как известно, большинство животных и двудомных растений являются раздельнополыми организмами, причем внутри вида количество особей мужского пола приблизительно равно количеству особей женского пола.

Пол можно рассматривать как один из признаков организма. Наследование признаков организма, как правило, определяется генами. Механизм же определения пола имеет иной характер - хромосомный (рис. 328).

Пол чаще всего определяется в момент оплодотворения. У человека женский пол является гомогаметным, то есть все яйцеклетки несут Х-хромосому. Мужской организм - гетерогаметен, то есть образует два типа гамет - 50% гамет несет Х-хромосому и 50% - Y-хромосому. Если

образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому - мужской.

Соотношение полов, близкое к расщеплению 1:1, соответствует расщеплению при анализирующем скрещивании. Поскольку женский организм имеет две одинаковые половые хромосомы, его можно рассматривать как гомозиготный, мужской, образующий два типа гамет - как гетерозиготный.

Из приведенной схемы видно, как происходит формирование в равных количествах двух групп особей, отличающихся набором половых хромосом.

Существует четыре основных типа хромосомного определения пола (рис. 329):

© мужской пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

© мужской пол гетерогаметен; 50% гамет несут Х-, 50% -не имеют половой хромосомы;

© женский пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

© женский пол гетерогаметен; 50% гамет несут Х-, 50% - не имеют половой хромосомы.

40.5. Наследование признаков,
сцепленных с полом

Генетические исследования установили, что половые хромосомы отвечают не только за определение пола организма - они, как и аутосомы, содержат гены, контролирующие развитие определенных признаков.

Наследование признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т.Морган.

У дрозофилы красный цвет глаз доминирует над белым. Проводя реципрокное скрещивание, Т.Морган получил весьма интересные результаты. При скрещивании красноглазых самок с белоглазыми самцами, в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F 1 , то во втором поколении все самки оказываются красноглазыми, а у самцов происходит расщепление - 50% белоглазых и 50% красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F 2 половина самок и самцов - красноглазые, половина - белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т.Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме, а Y-хромосома таких генов не содержит.

Таким образом, благодаря проведенным скрещиваниям, был сделан очень важный вывод: ген цвета глаз сцеплен с полом, то есть находится в Х-хромосоме.

У человека мужчина получает Х-хромосому от матери. Половые хромосомы человека имеют небольшие гомологичные участки, несущие одинаковые гены (например, ген общей цветовой слепоты), это участки конъюгации (рис. 330). Но большинство генов, сцепленных с Х-хромосомой, отсутствуют в У-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных .

Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин (так как они гетерогаметны), хотя носителем этих аномалий чаще бывает женщина.

У большинства организмов генетически активна только Х-хромосома, в то время как Y-хромосома практически инертна, так как не содержит генов, определяющих признаков организма. У человека лишь некоторые гены, не являющиеся жизненно важными, локализованы в Y-хромосоме (например, гипертрихоз - повышенная волосатость ушной раковины). Гены, локализованные в Y-хромосоме, наследуются особым образом - только от отца к сыну.

Полное сцепление с полом наблюдается лишь в том случае, если Y-хромосома генетически инертна. Если же в Y-хромосоме имеются гены, аллельные генам Х-хромосомы, характер наследования признаков иной. Например, если мать имеет рецессивные гены, а отец доминантные, то все потомки первого поколения будут гетерозиготны с доминантным проявлением признака. В следующем поколении получится обычное расщепление 3:1, причем с рецессивными признаками будут только девочки. Такой тип наследования называют частично сцепленным с полом . Так наследуются некоторые признаки человека (общая цветовая слепота, кожный рак).

40.6. Генотип целостная,
исторически сложившаяся система генов.

Изучая закономерности наследования, Г.Мендель исходил из предположения, что один ген отвечает за развитие только одного признака. Например, ген, отвечающий за развитие окраски семян гороха, не влияет на форму семян. Причем эти гены располагаются в разных хромосомах, и их наследование независимо друг от друга. Поэтому может сложиться впечатление, что генотип представляет собой простую совокупность генов организма. Однако сам Мендель в ряде опытов столкнулся с явлениями наследования, которые не могли быть объяснены с помощью открытых им закономерностей. Так, при изучении наследования окраски семенной кожуры, Мендель обнаружил, что ген, вызывающий образование бурой семенной кожуры, способствует также развитию пигмента и в других частях растения. Растения с бурой семенной кожурой имели цветки фиолетовой окраски, а растения с белой семенной кожурой - белые цветки. В других опытах, проводя скрещивание белой и пурпурной фасоли, он получил во втором поколении целый ряд оттенков - от пурпурного до белого. Мендель пришел к заключению, что наследование пурпурного цвета зависит не от одного, а от нескольких генов, каждый из которых дает промежуточную окраску. Можно говорить о том, что Мендель не только установил законы независимого наследования пар аллелей, но и заложил основы учения о взаимодействии генов.

После переоткрытия законов наследования признаков, многочисленные опыты подтвердили правильность установленных Менделем закономерностей. Вместе с тем, постепенно накапливались и факты, показывающие, что полученные Менделем числовые соотношения при расщеплении гибридного поколения не всегда соблюдались. Это указывало на то, что взаимоотношения между генами и признаками носят более сложный характер. Выяснилось, что:

© один и тот же ген может оказывать влияние на развитие нескольких признаков;

© один и тот же признак может развиваться под влиянием многих генов.

Различают несколько типов взаимодействия аллельных генов:

© Полное доминирование , при котором рецессивный признак не проявляется;

© Неполное доминирование , при котором у гибридов наблюдается промежуточный характер наследования.

© Кодоминирование , в этом случае у гибридов проявляются оба признака. Например, кодоминирование проявляется у людей с 4 группой крови. Первая группа крови у людей с аллелями i O i O , вторая - с аллелями I A I A или I A í 0 ; третья - I В I В или I В í 0 ; четвертая группа имеет аллели I А I В.

Известно много примеров, когда гены влияют на характер проявления определенного неаллельного гена или на саму возможность проявления этого гена.

Комплементарными называют гены, обусловливающие при совместном сочетании в генотипе в гомозиготном или гетерозиготном состоянии новое фенотипическое проявление признака.

Классическим примером комплементарного взаимодействия генов является наследование формы гребня у кур (рис. 331). При скрещивании кур, имеющих розовидный и гороховидный гребень, все первое поколение имеет ореховидный гребень. При скрещивании гибридов первого поколения у потомков наблюдается расщепление по форме гребня: 9 ореховидных: 3 розовидных: 3 гороховидных: 1 листовидный. Генетический анализ показал,

что куры с розовидным гребнем имеют генотип А_bb , с гороховидным - ааВ_ , с ореховидным - А_В_ и с листовидным - ааbb , то есть развитие розовидного гребня происходит в том случае, если в генотипе имеется только один доминантный ген - А , гороховидного - наличие только гена В , сочетание генов А В обусловливает появление ореховидного гребня, а сочетание рецессивных аллелей этих генов - листовидного.

При комплементарном взаимодействии генов в дигибридном скрещивании получаются расщепления потомков отличные от менделевского: 9:7, 9:3:4, 13:3, 12:3:1, 15:1, 10:3:3, 9:6:1. Однако все они являются видоизменениями общей менделевской формулы 9:3:3:1.

Белое оперение определяется несколькими различными генами, например, у белых леггорнов - генамиССII , а у белых плимутроков - ccii (рис. 332). Доминантная аллель гена С определяет синтез предшественника пигмента (хромогена, обеспечивающего окраску пера), а его рецессивная аллель с - отсутствие хромогена. Ген I является подавителем действия гена С , а аллель i не подавляет его действия. Таким образом, белая окраска у кур определяется не наличием особых генов, определяющих развитие этой окраски, а наличием гена, подавляющего ее развитие.

При скрещивании, например, леггорнов (ССII )с плимутроками (ссii ), все потомство F 1 имеет белую окраску, которая определяется наличием в их генотипе гена-подавителя (СсIi ). Если же гибридов F 1 скрестить между собой, то во втором поколении происходит расщепление по окраске в отношении 13/16 белых: 3/16 окрашенных. Окрашенным оказывается та часть потомства, в генотипе которой имеется ген окраски и отсутствует его подавитель (С_ii ).

Скрещивая белую и пурпурную фасоли, Мендель столкнулся с явлением полимерии. Полимерией называют однозначное влияние двух, трех и более неаллельных генов на разви-

тие одного и того же признака. Такие гены называют полимерными , или множественными , и обозначают одной буквой с соответствующим индексом, например, А 1 , А 2 , а 1 , а 2 .

Полимерные гены контролируют большинство оличественных признаков организмов: высоту растения, массу семян, масличность семян, содержание сахара в корнеплодах сахарной свеклы, удойность коров, яйценоскость, вес тела и т.д.

Явление полимерии было открыто в 1908 г. при изучении окраски зерновки у пшеницы Нельсоном-Эле (рис. 333). Он предположил, что наследование окраски у зерновки пшеницы обусловлено двумя или тремя парами полимерных генов. При скрещивании краснозерной и белозерной пшеницы в F 1 наблюдалось промежуточное наследование признака: все гибриды первого поколения имели светло-красное зерно. В F 2 происходило расщепление в отношении 63 краснозерных на 1 белозерное. Причем краснозерные зерновки имели разную интенсивность окраски - от темно-красной до светло-красной. Исходя из наблюдений, Нельсоном-Эле определил, что признак окраски зерновок обуславливает три пары полимерных генов.

У человека по типу полимерии наследуется, например, окраска кожи.

Плейотропией называют множественное действие генов. Плейотропное действие генов имеет биохимическую природу: один белок-фермент, образующийся под контролем одного гена, определяет не только развитие данного признака,нои воздействует на вторичные реакции биосинтеза различных других признаков и свойств, вызывая их изменение.

Плейотропное действие генов впервые было обнаружено Г. Менделем, который обнаружил, что у растений с пурпурными цветками всегда имелись красные пятна в пазухах листьев, а семенная кожура была серого или бурого цвета. То есть развитие этих признаков определяется действием одного наследственного фактора (гена).

У человека встречается рецессивная наследственная болезнь-серповидно-клеточная анемия. Первичным дефектом этой болезни является замена одной из аминокислот в молекуле гемоглобина, что приводит к изменению формы эритроцитов. Одновременно с этим возникают глубокие нарушения в сердечно-сосудистой, нервной, пищеварительной, выделительной системах. Это приводит к тому, что гомозиготный по этому заболеванию погибает в детстве.

Плейотропия широко распространена. Изучение действия генов показало, что плейотропным эффектом, очевидно, обладают многие, если не все, гены.

Таким образом, выражение «ген определяет развитие признака» в значительной степени условно, так как действие гена зависит от других генов - от генотипической среды. На проявление действия генов влияют и условия окружающей внешней среды. Следовательно, генотип является системой взаимодействующих генов.

Явление сцепленного с полом наследования впервые открыл Т. Морган при скрещивании мух-дрозофил с красной и белой окраской глаз. Если в скрещивании участвовали красноглазые самки и белоглазые самцы, все потом­ство рождалось красноглазым. Во втором же поколении наблюда­лось расщепление в соотношении 3:1. Но скрещивания расщепление было только среди самцов: одна половина из них была с белыми глазами и другая - с красными; все самки были красноглазыми. При обрат­ном (реципрокном) скрещивании белоглазых самок с красногла­зыми самцами картина была иной: все самки имели красные глаза, самцы - белые. При скрещивании этих особей во втором поколении половина самцов и самок рождалась красноглазыми. Признаки, расщепление по которым при скрещивании связано с полом, называют сцепленными с полом . Эти признаки обусловлива­ются генами, локализованными в половых хромосомах. Установ­лено, что наследование их зависит в основном от Х-хромосомы.

Практическое использование сцепленного с полом наследова­ния признаков. В птицеводстве оказалась полезной рецессивная, сцепленная с Х-хромосомой мутация карликовости. Карликовые куры отличаются от нормальных лучшей оплатой корма продук­цией, для них требуется меньшая площадь содержания. Они резистентны к отдельным болезням. В шелководстве получил распространение метод использова­ния сцепленных с полом деталей для получения гусениц только мужского пола, дающих более крупные коконы, содержащие шелка на 25-30 % больше, чем коконы гусениц самок

Конец работы -

Эта тема принадлежит разделу:

Генетикапредмет, объект. Методы генетических исследований

Митоз упорядоченное деление ядра клетки при котором каждая их двух дочерних клеток получает такое же количество и те же типы хромосом какие имела..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Генетика- предмет, объект. Методы генетических исследований
Предмет генетики. Генетика-наука о наследственности и изменчивости организмов. Наследствен­ность - свойство живых существ обеспечивать

Роль ядра в передаче наследственной информации
Ядро - это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию(молекулы ДНК), осуществляющий основные функции: хранение, передача и реализаци

Кариотип и его видовые особенности
В соматических клетках хромосомы парные, а набор хромо­сом в них диплоидный. " Парность хромосом возникает при слиянии (оплодотворении) мужской и женской половых клеток, которые

Законы Менделя правило чистоты гамет
Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающих

Аллели, множественный аллелизм
Аллели - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом и определяющие альтернативные варианты развития одного и того же

Взаимодействие аллельных генов. Летальные гены
При промежуточном наследовании потомство в первом поколении сохраняет единообразие, обладает признаком промежуточного характе­ра. Иногда признак принимает не среднее выражение, а уклоня­ется в стор

Учет врожденных болезней и аномалий. Методы генетического анализа
Гены, вызывающие гибель 100 % особей до достижения ими половой зрелости, называются летальными, более 50 % - субле­тальными (полулетальными) и менее 50 % - субви­тальными Летальные гены могут быть

Взаимодействие неаллельных генов. Схемы скрещиваний
Новообразование.Новообразованием называется такой тип взаимодействия генов, когда при их сочетании в одном организ­ме развивается совершенно новая форма признака. Комплемен

Гены-модификаторы, экспрессивность, пенетрантность, плейотропия
Гены-модификаторы.Гены, не проявляющие собственного действия, но усиливающие или ослабляющие эффект действия других генов, называются генами-модификаторами.

Сцепленное наследование признаков (полное и неполное). Определение расстояния между генами
Гены, расположенные в одной хромосоме, представляют собой группу сцепления. Сцепление генов - это совместное наследование генов, располо­женных в одной и той же хромосоме. Количество групп с

Соматический (митотический) кроссинговер и факторы, влияющие на кроссинговер. Сущность хромосомной теории наследственности
Сущность соматического кроссинговера заключается в том, что он осуществляется при митотическом делении соматических кле­ток главным образом эмбриональных тканей. Кроссинговер проис­ходит меж

Карты хромосом и метод их построения
гены расположены в хромосомах в линейной последователь­ности на определенных расстояниях друг от друга. На основании анализа частоты кроссинговера между генами к настоящему времени для многи

Хромосомное определение пола. Нарушения в развитии пола(интерсексуальность у животных, синдром Клайнфельтера, синдром Тернера, фримартинизм)
1 Хромосомное определение пола. У растений и животных наиболее распространён хромосомный механизм определения пола. В зависимости от того, какой пол является гетерогам

Бисексуальность организмов. Наследование признаков ограниченных полом
Все организмы, в том числе и раздельнополые, в генетическом отношении бисексуальны (двуполы), т.к. зиготы их получают генетическую информацию, потенциально дающую возможность развивать признаки муж

Проблема регуляции пола
Проблема регуляции пола вытекает из необходимости увели­чения продукции животноводства за счет преимущественного получения особей одного вида, дающих более высокий выход молока, мяса, и т. д. От вы

Доказательства роли ДНК в наследственности. Биологическая роль нуклеиновых кислот
1ый опыт на мышах. Ученый вводил мышам вирулентный капсульный и авирулентный бескапсульный штаммы пневмококков. При введении вирулентного штамма мыши заболевали пневмонией и погибали. При введении

Строение ДНК. Ее роль в жизнедеятельности клетки, репликация ДНК
ДНК - это длинная полимерная молекула, нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт д

Виды РНК, их функции, строение. Генетический код и его свойства
три основных вида РНК: информационная (иРНК), или матричная (мРНК), рибосомная (рРНК), и транспортная (тРНК). Они различаются по величине молекул и функциям. Все типы РН

Синтез белка в клетке
На­следственность реализуется в процессе биосинтеза белка. Синтез ферментов и других белков, необходимых для жизнедеятельности и развития организмов, происходит в основном на первой стадии интерфаз

Строение и размножение бактерий
Клетки бактерий окружены оболочкой, внутри которой находятся цитоплазма, ядерный аппарат, рибосомы, ферменты и другие включения. у них отсутствуют митохондрии, аппарат Гольджи и эндоплазматическая

Строение и размножение вирусов. Взаимодействие фага с бактериальной клеткой
Вирусы – неклеточные формы жизни. Частицы вирусов (от 20 до 450 нм). они имеют палочковидную, шарообразщую, многогранную форму. Вирусная частица содержит одну из нуклеиновых кислот, которая окружен

Конъюгация у бактерий
Конъюгация - перенос генетического материала от одной бак­териальной клетки (донора) к другой (реципиенту) при их непо­средственном контакте. Неравноценная роль

Трансдукция у бактерий
Трансдукция - перенос генов из одной бактериальной клетки в другую при помощи бактериофага. Явление трансдукции уста­новлено у кишечной палочки и актиномицетов. Как прав

Трансформация у бактерий
Трансформация - поглощение изолированной ДНК бактерии до­нора клетками бактерии реципиента. Явление трансформации кратко освещено при изложении доказательств роли ДНК в

Генная инженерия и задачи, которые она решает
Биотехнология - это наука об использовании живых организмов и биологических процессов в производстве. Генная инженерия

Клеточная инженерия. Соматическая гибридизация
Под клеточной инженерией понимают метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. С

Эмбриогенетическая инженерия. Клонирование эмбрионов млекопитающих
Эмбриогенетическая инженерия - это активная перестройка генома животных путем вмешательства в их развитие на самых ранних стадиях онтогенеза. Перестройка генома - это ре

Химерные животные. Трансгенные животные
1)Одно из перспективных направлений биотехнологии - искус­ственное получение химер (аллофенных животных). Понятие хи­мера означает составное животное. Сущность метода

Виды изменчивости
Мутационная изменчивость.Мутация - стойкое изменение в структуре ДНК и кариотипе. Мутационный процесс - первоис­точник наследственной изменчивости. В результате его у потом­

Вариационный ряд и его построение
Вариационный ряд - это упорядоченное изображе­ние реально существующего распределения особей в группе по величине признака. Вариационный ряд - это двойной ряд чисел, состоящ

Перечислить основные статистические параметры, характеризующие совокупность и что они показывают
Средние величины. Средняя арифметическая (х) показывает, какое значение признака наиболее характерно в целом для данной совокупности. Она используется для сравнения пород, стад, ли

Ошибки репрезентативности и их применение в биометрии
Биометрия- наука о применении математических методов в биологических исследованиях. Впрактичес­кой работе основные параметры совокупности х и а вычисляют не по гене

Определение достоверности разности между средними арифметическими двух выборочных совокупностей
При сравнении средних арифметических двух генеральных со­вокупностей любая разность между ними будет достоверна. В ве­теринарии, зоотехнии приходится сравнивать между собой средние величины не гене

Генетика пола. Наследование признаков сцепленных с полом.
Цели урока.

  1. Сформировать у учащихся систему знаний о генетическом определении пола у человека и наследовании, сцепленным с полом; понятие о механизме хромосомного определения пола. Выявить цитологические основы этого явления.

  2. Научить учащихся правильно объяснять приблизительно равную вероятность рождения мальчика или девочки; научить решать задачи по данной теме.

  3. Развивать у учащихся умения сравнивать, анализировать, делать самостоятельно выводы; сформировать познавательный интерес к изучению научных проблем, связанных с генетикой пола.
Оборудование: презентация «Генетика пола», медиа пособие к учебнику Н.И. Сонина, подборка задач по данной теме и справочные материалы.

Ход урока

I. Организационный момент .

II. Изучение нового материала по плану:


  1. Генетика пола.

  2. Хромосомный механизм определения пола.

  3. Различные формы определения пола.

  4. Соотношение полов.

  5. Наследование, сцепленное с полом.
III. Закрепление. Решение задач по теме, беседа по вопросам.

Опорные точки урока:


  • Теоретическая и практическая значимость знаний механизмов наследования пола у различных организмов

  • Соотношение особей разного пола у раздельнополых организмов (животных, людей) равное 1:1, сходство его с расщеплением признаков при скрещивании рецессивной гомозиготы с гетерозиготой

  • Аутосомы и половые гетерохромосомы различных организмов. Зависимость пола организма от набора половых хромосом, который формируется в момент оплодотворения .

  • Случайный характер соединения половых клеток в зиготе. Закономерность общего результата появления потомков разного пола в соотношении 1:1, определяемая большим числом равновероятных встреч гамет, - статистическая закономерность.

  • Сцепленное с полом наследование некоторых жизненно- важных признаков - особый тип наследования. Наследование гемофилии, дальтонизма и других болезней и признаков как доказательство зависимости формирования признаков от пола.

  • Практическое значение изучения сцепленного с полом наследования признаков. Использование закономерностей сцепленного с полом наследования в селекционной работе.
1. Генетика пола

Генетика объяснила сущность удивительной и важной проблемы:
равное распределение женских и мужских особей в поколениях животных и людей

Беседа с учащимися по вопросам:


  1. Для какого способа размножения характерно образование гамет?

  2. Какой набор хромосом они имеют?

  3. Какая часть сперматозоида и яйцеклетки является носителем генетической информации?

  4. Как называется оплодотворенная яйцеклетка, и какой набор хромосом она имеет?

  5. Что вы знаете о сцепленном наследовании генов?

Половое размножение очень широко распространено в природе, связано с формированием мужских и женских половых клеток. Каким же образом происходит распределение пола у различных видов животных .? Этот вопрос издревле будоражил умы людей, и только недавно, с возникновением науки генетика, человек смог найти этому объяснение.

Для начала вспомним, что представляет собой хромосомный набор клеток человека. Слайд.

В кариотипе человека из 46 хромосом 44 одинаковы у всех особей, независимо от пола (эти хромосомы называют аутосомами), а одной парой хромосом, называемых половыми, женщины отличаются от мужчин. Это общебиологическая закономерность для всех живых организмов, размножающихся половым путем.

Диплоидная клетка организма человека: 46 хромосом =23 пары гомологичных хромосом, из которых 22 пары - аутосомы + 1 пара половые хромосомы: у мужчины - ХY; у женщины - ХХ. У человека гетерогаметным является мужской пол, а женский гомогаметный. В соматической клетке мужчины - разные половые хромосомы. В соматической клетке женщины - одинаковые половые хромосомы. Слайд

Пол можно рассматривать как один из признаков организма, как правило, определяется генами. Механизм же определения пола имеет иной характер - хромосомный.

2. Хромосомный механизм определения пола

Согласно хромосомной теории К.Корренса (1907), пол будущего потомка определяется сочетанием половых хромосом в момент оплодотварения. Пол, имеющий одинаковые половые хромосомы, называют гомогаметным , так как он дает один тип гамет, а имеющий разные - гетерогаметным , так как он образует два типа гамет. У человека, млекопитающих, мухи дрозофилы гомогаметный пол женский, а гетерогаметный - мужской.

У мужского пола в процессе гаметогенеза формируется 2 типа гамет в равной пропорции , так как мужской пол - гетерогаметный: Х-сперматозоиды и Y-сперматозоиды.

Поскольку у женского пола половые хромосомы одинаковы, так как женский пол - гомогаметный, то каждая яйцеклетка несет Х-хромосому.

Эта биологическая закономерность, обусловленная механизмом мейоза.

От чего зависит рождение женских и мужских особей?

Запись на доске определение пола.

Каким образом половые различия в хромосомных наборах самцов и самок поддерживаются в процессе размножения?

В чем же отличие “Х” хромосомы от “У” хромосомы?

Отличаются по строению: Y-хромосома состоит как бы из двух участков - одного гомологичного Х-хромосоме, а другого негомологичного. А так же по набору генов, которые в них находятся.

Основные положения.


  1. Кариотип подавляющего большинства видов животных организмов включает аутосомы - хромосомы одинаковые у представителей обоих полов, и гетерохромосомы, по которым оба пола отличаются друг от друга.

  2. В половых хромосомах помимо генов, определяющих половую принадлежность, содержатся гены, не имеющие отношения к признакам того или иного пола.

  3. Аллельные гены в X- и Y-хромосомах наследуются в соответствии с законами Менделя .

Существует четыре основных типа хромосомного определения пола.


  1. Мужской пол гетерогаметен; 50% гамет несут Х-, 50% и Y- хромосому (млекопитающие, двукрылые, жуки, клопы).

  2. Мужской пол гетерогаметен; 50% гамет несут Х- , 50% - не имеют половой хромосомы (кузнечики).

  3. Женский пол гетерогаметен; 50% гамет несут Х-, 50% - Y хромосому (птицы, пресмыкающиеся, хвостатые амфибии, шелкопряд).

  4. Женский пол гетерогаметен; 50% гамет несут Х-, 50% - не имеют половой хромосомы (моль).
3. Различные формы определения пола

Существует 3 формы определения пола:


  1. Прогамное определение пола. Осуществляется до оплодотворения в процессе онтогенеза. Так происходит, в частности. У коловраток при этом образуются яйцеклетки разных размеров - крупные и мелкие. После оплодотворения из крупных яиц развиваются самки, а из мелких - самцы .

  2. Сингамное определение пола, происходящее при оплодотворении, определяется половыми хромосомами. Этот тип является наиболее распространенным.

  3. Эпигамное (метагамное) определение пола зависит не от присутствия, соотношения или плоидности хромосом, а от интенсивности действия факторов окружающей среды, что может расцениваться как модификационная изменчивость. Ярким примером тому является детерминация пола у крокодилов. Из отложенных самкой яиц в зависимости от температуры окружающей среды могут вылупляться или юные самцы или самки.
4. Соотношение полов

Учащимся предлагается ответить на вопрос:

Почему у раздельнополых организмов (в том числе и у людей) соотношение полов составляет 1:1?

Работа со справочными материалами

Учащимся предлагается сделать самостоятельные выводы.


  1. На протяжении любого периода жизни мужские индивидуумы менее жизнеспособны, чем женские

  2. Но естественный отбор направлен к тому, чтобы обеспечить создание равного количества особей обоего пола к моменту наступления половой зрелости.

  3. Можно предположить, что сперматозоид, содержащий Y- хромосому более подвижен, более жизнеспособен или обладает большей способностью оплодотворить яйцеклетку, чем сперматозоид, содержащий Х - хромосому.
5. Наследование, сцепленное с полом

Генетические исследования установили, что существуют признаки, которые определяются генами, лежащими в половых хромосомах .

Наследование признаков, гены которых локализованы в Х- или Y- хромосомах, называют наследованием, сцепленным с полом.

Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин, хотя носителями чаще бывают женщины.:

X h Y - мужчина, больной гемофилией; X d Y- дальтоник.

Сообщения учащихся о заболеваниях сцепленных с полом.

Дальтонизм.

Гемофилия.

Остановиться на наследовании гемофилии Царской семьей. Слайд.

Другие заболевания.

Соотношение полов.

Различают первичное соотношение полов, точнее, соотношение эмбрионов и вторичное - соотношение мальчиков и девочек среди новорожденных.

Теоретически соотношение полов в момент оплодотворения должно быть близким 1:1, так как встреча яйцеклетки со сперматозоидом, содержащим Х- или Y- половую хромосому, равновероятна.

При обследовании у человека обнаружено, что на 100 женских зигот образуется 140-160 мужских (первичное соотношение полов )

К моменту рождения на 100 девочек приходится 103-105 мальчиков 9 (вторичное соотношение полов).

Третичное соотношение полов (постнатальный период) к 20-ти годам на 100 девушек приходится 100 юношей; к 50-ти годам на 100 женщин - 85 мужчин, а к 85-ти годам на 100 женщин - 50 мужчин.

Отсюда напрашивается вывод о большей жизнестойкости женского организма, что может быть объяснено, наряду с другими причинами, мозаицизмом женского организма по половым хромосомам.


III. Закрепление

Решение задач и обсуждение вопросов.

1) Вопросы для обсуждения.


  1. В чем состоят особенности половых хромосом?

  2. В чем заключается генетический механизм определения пола?

  3. Какие признаки, наследование которых сцеплено с полом, вам известны у человека ?

  4. установите генотип женщины, у которой половина сыновей больна цветовой слепотой?

  5. Что такое наследование, сцепленное с полом?

  6. От кого из родителей мальчик получает Х-хромосому?

  7. Когда определяется пол цыпленка: до оплодотворения или в момент оплодотворения?

  8. Почему у детей появляются новые признаки , не свойственные родителям?

  9. Влияет ли среда на формирование и проявление признаков организма?

  10. По какой хромосоме у человека произошло сцепление признаков: дальтонизма, гемофилии?
2) Задачи.

Задача 1

Серебристая курица из породы белый виандот скрещена с золотистым (коричневым) петухом породы леггорн. Определить соотношение и расщепление групп гибридов по фенотипу и генотипу.

Примечание : указанные признаки сцеплены с полом: доминантный ген серебристой окраски (С) локализован в одной Х-хромосоме, аллельный ему рецессивный ген золотистой окраски (с) - в другой Х-хромосоме. У птиц женский пол - гетерогаметный , а мужской - гомогаметный.

Задача 2

От родителей, по фенотипу имеющих нормальное зрение, родилось несколько детей с нормальным зрением и один мальчик - дальтоник (не различает красный и зеленый цвета) Чем это объяснить? Каковы генотипы родителей и детей?

Задача 3

Какие дети могли бы родиться от брака гемофилика с женщиной, страдающей дальтонизмом (а в остальном имеющей вполне благополучный генотип)?


Выводы.

  1. Пол организма определяется в момент оплодотворения и зависит от хромосомного набора зиготы.

  2. Формирование пола связано с комбинацией половых хромосом

4. Домашнее задание § 39.

Учащимся предлагается ответить на вопросы:

Как называются хромосомы, одинаковые у обоих полов?


  1. Какие хромосомы называются половыми или гетерохромосомами?

  2. От чего зависит пол будущего потомка?

  3. Какой пол и почему называется гомогаметным?

  4. Какой пол называется гетерогаметным?

  5. Какой пол гомогаметен у человека, большинства позвоночных, многих насекомых и двудомных растений?

  6. Какой пол гомогаметен у птиц, бабочек, рептилий, хвостатых амфибий?

  7. Какие признаки называются сцепленными с полом?

  8. Почему у особей мужского пола в фенотипе сразу проявляются даже рецессивные признаки, связанные с Х -хромосомой ?

  9. Приведите примеры заболеваний, сцепленных с полом?
Учащимся предлагается решить задачи по теме “Наследование сцепленное с полом”

1. Гипоплазия эмали наследуется как сцепленный с Х-хромосомой доминантный признак. В семье, где оба родителя страдали этой аномалией, родился сын с нормальными зубами. Каким будет второй сын?

2 . У человека псевдогипертрофическая мускульная дистрофия заканчивается смертью в 10–20 лет. В некоторых семьях эта болезнь зависит от рецессивного сцепленного с полом гена . Болезнь зарегистрирована только у мальчиков. Если больные мальчики умирают до деторождения, то почему это заболевание не исчезает из популяции?

3. Гипертрихоз (вырастание волос на краю ушной раковины) наследуется как признак, сцепленный с У-хромосомой. Какова вероятность рождения детей и внуков с этим признаком в семье, где отец и дедушка обладали гипертрихозом?

Половое размножение свойственно всем живым организмам за исключением тех, которые вторично утратили половой процесс. Определение и развитие пола — сложный процесс, который детерминирован генетически, т.е. находится под контролем генов, а также подвержен влиянию внешней среды.


В животном мире господствует раздельнополость, т.е. существуют два типа ясно различающихся в половом отношении организмов — самцы и самки. Различия между ними очень глубокие и затрагивают не только органы, непосредственно участвующие в половом размножении. Половые различия сопровождаются заметными различиями в росте, обмене веществ, инстинктах, а также в тех признаках, которые подвержены воздействию половых желез, например, гребни, рога, волосы, оперение.

Гермафродитизм у животных в норме встречается только у немногих видов, например у червей.

У растений, наоборот, преобладает гермафродитность . Половые различия у растений выражены менее резко, чем у животных. Для растений характерны переходы от обоеполости к однополости, частые аномалии в развитии генеративных органов, изменение пола под влиянием внешних условий.

Определение пола у разных организмов может происходить на разных стадиях жизненного цикла.

Пол зиготы может предопределяться еще в процессе созревания женских гамет — яйцеклеток. Такое определение пола называется прогамным , т.е. оно происходит до оплодотворения. Прогамное определение пола обнаружено у коловраток и кольчатых червей. Яйцеклетки этих животных в результате неравномерного распределения цитоплазмы в процессе оогенеза различаются по размеру. Из крупных яйцеклеток после определения развиваются только самки, из мелких — только самцы.

Наиболее распространенным типом определения пола является сингамное , т.е. определение пола в момент слияния женских и мужских гамет. Оно встречается у млекопитающих, птиц, рыб и др.

Известен также третий тип определения пола — эпигамное , которое происходит на ранних стадиях индивидуального развития особи (например, у морского червя Bonelia viridis).

У большинства животных и раздельнополых растений основную роль в определении пола играют половые хромосомы . Еще в начале ХХ в. (1902 г., McClung) было установлено, что у некоторых насекомых (клоп Protenor) самцы образуют два типа сперматозоидов: один тип — с лишней хромосомой, второй — без нее. У самцов клопа Protenor в одних сперматозоидах было 7 хромосом, в других — 6. Непарную хромосому назвали половой хромосомой, в отличие от остальных — аутосом . В соматических клетках самца содержится 13 хромосом, одна из которых Х-хромосома (12A+X), в соматических клетках самки — 14 хромосом (12A+XX). Женский пол клопа является гомогаметным, так как образует гаметы одного типа (6A+X), а мужской — гетерогаметным и образует два типа гамет (6A+X) и (6А+0). Такой тип определения пола, при котором самки имеют кариотип ХХ , а самцы — Х0 , назван Protenor-типом. Он описан у большинства прямокрылых насекомых, жуков, пауков, многоножек и нематод.

Вслед за Protenor-типом был открыт другой тип определения пола, который характерен для млекопитающих, многих рыб, амфибий и ряда растений. Впервые он был описан у клопа Lygaeus turcicus и получил название Lygaeus-типа. При этом типе определения пола имеются два вида половых хромосом: Х и Y . Самки имеют две хромосомы, а самцы одну Х-хромосому и непарную ей Y-хромосому. Обозначение половых хромосом буквами X и Y отражает их форму, которую они имеют в профазе мейоза в результате отталкивания хроматид, соединенных только в области первичной перетяжки.

Женский пол при типе Lygaeus является гомогаметным, мужской — гетерогаметным.

У птиц, некоторых видов бабочек и рыб тип определения пола — обратный Lygaeus, т.е. гомогаметным является мужской пол. В этом случае для обозначения половых хромосом используют другие буквы: ♀ZW, ♂ZZ.

У моли описан тип — обратный Protenor, т.е. ♀Х0, ♂ХХ.

Особый тип определения пола характерен для пчел. Здесь разница между полами затрагивает не одну пару хромосом, а весь набор. Самки пчел — диплоидны, а самцы — гаплоидны, так как женские особи развиваются из оплодотворенных яйцеклеток, мужские особи — в результате партеногенеза.

Хромосомный механизм определения пола у растений был впервые определен у печеночного мха — Sphaerocarpus в ходе тетрадного анализа. Из четырех спор, образующихся в результате мейотического деления материнской клетки, две дают начало женским растениям, а две другие — мужским. Поскольку хромосомы мха Х и Y морфологически легко различимы, было установлено, что женские растения имеют кариотип 7А + Х, а мужские — 7А + Y. Диплоидный спорофит, который образуется в результате оплодотворения, имеет кариотип 14А + XY.

Гетероморфные пары хромосом обнаружены у мужских растений дремы, конопли, щавеля, хмеля и др. Определение пола у них соответствует типу Lygaeus. У земляники гетерогаметным (XY ) является женский пол, мужской — гомогаметным.

Половые хромосомы отличаются от аутосом поведением в профазе мейоза. Во время гаметогенеза они находятся в сильно спирализованном состоянии и редко объединяются в биваленты. Тем не менее они обладают сегментной гомологией и проявляют тенденцию к частичной коньюгации.

X и Y -хромосомы различаются по форме, величине и генному составу. Х-хромосома чаще всего относится к разряду крупных хромосом с большим генетическим объемом. У дрозофилы Х-хромосома — самая крупная в наборе. У человека Х-хромосома относится к разряду средних метацентриков, с нарушением ее структуры связан ряд тяжелых наследственных патологий (синдромов). Мужскую половую хромосому характеризует обедненность генами и, соответственно, низкая генетическая активность, а иногда и полная инертность. У человека с помощью молекулярно-генетических методов в Y-хромосоме выявлено около 40 генов. Однако реальных генетических функций еще меньше. В частности, в Y-хромосоме лежит мутация, отвечающая за малоприятный для мужчин признак — волосатость ушей. У дрозофилы Y-хромосома практически не оказывает никакого влияния на развитие пола.

У растений Y-хромосома также ведет себя по-разному: у одних она играет активную роль в определении пола, у других — является инертной. Например, Y-хромосома Milandrium alba (дрема) имеет сегменты, потеря которых ведет к нарушению нормального процесса развития пола и, как следствие, к мужской или женской стерильности. У Rumex acetosa Y-хромосома генетически инертна. У некоторых растений активность Y-хромосомы настолько высока, что особи YY оказываются жизнеспособными, как у аспарагуса, в то время как у других видов подобные особи не выживают.

Если гены, детерминирующие признаки, находятся в половых хромосомах, то их наследование не подчиняется законам Менделя. Распределение этих признаков соответствует распределению половых хромосом в процессе мейоза. Поскольку большинство генов, локализованных в Х-хромосоме, не имеют своих аллелей в Y-хромосоме, то у гетерогаметного пола (XY) в фенотипе проявляются все рецессивные гены, содержащиеся в их единственной Х-хромосоме. Гены, если они имеются в Y-хромосоме, проявляются также только у гетерогаметного пола.

Наследование признаков, определяемых генами, локализованными в Х и Y-хромосомах, называют сцепленным с полом. Впервые оно было описано Т. Морганом и его коллегами на примере рецессивного признака “white” — белые глаза.

Как видно из схемы, результаты прямого и обратного скрещиваний в случае наличия сцепления с полом разные. В прямом скрещивании гомозиготная красноглазая самка передает доминантный ген W и дочерям и сыновьям, благодаря чему все гибриды F 1 имеют красные глаза. Скрещивание гетерозиготных самок F 1 с самцами F 1 дает в F 2 только красноглазых самок, одна половина которых является гомозиготными, а другая — гетерозиготными. Среди самцов F 2 наблюдается расщепление на красноглазых и белоглазых в соотношении 1: 1, которое обусловлено гетерозиготностью самок F 1 , так как свою единственную Х-хромосому сыновья наследуют от матери. Общая формула расщепления по окраске глаз в F 2 (без учета пола) — 3: 1. На наличие сцепления признака с полом указывает то, что белая окраска глаз в F 2 проявляется только у самцов.

В обратном скрещивании рецессивная гомозиготная белоглазая самка передает ген w вместе с Х-хромосомой и дочерям и сыновьям F 1 , но проявляется он только у самцов. У самок F 1 этот ген подавляется доминантным аллельным геном, полученным от отца, и поэтому глаза у них красные. Таким образом, признак передается от отца к дочерям, а от матери к сыновьям. Такое наследование называется крисс-кросс (крест-накрест). Скрещивание самок и самцов F 1 дает мух двух фенотипических классов (красноглазых и белоглазых) в соотношении 1: 1, которое полностью соответствует распределению половых хромосом.

Описанный тип наследования окраски глаз у дрозофилы является закономерным для всех организмов в отношении признаков, которые определяются генами, локализованными в Х-хромосоме.

Сцепленное с полом наследование используется для ранней диагностики пола у животных, что важно для сельскохозяйственного производства. В птицеводстве важно определять пол “суточных” цыплят, чтобы ставить петушков и курочек на разный рацион, откармливая петушков на мясо. Для диагностики пола используется крисс-кросс наследование признака окраски пера. При скрещивании пестрой курицы (признак доминантный) с черным петухом (признак рецессивный) в F 1 все петушки, получившие доминантный ген от матери, будут пестрыми, а курочки — черными.

У человека сцепленно с полом наследуются такие наследственные аномалии, как гемофилия и дальтонизм. Поскольку у человека гетерогаметным является мужской пол, то эти аномалии проявляются, в основном, у мужчин. Женщины обычно являются носительницами таких генов, имея их в гетерозиготном состоянии.

При разведении тутового шелкопряда крисс-кросс наследование используется для отбора самцов по окраске грены (признак сцеплен с полом), так как выход шелка из коконов тутового шелкопряда мужского пола на 20-30% выше.

Картина сцепленного с полом наследования может искажаться, если наблюдаются отдельные случаи нерасхождения половых хромосом в процессе мейоза. Так, при скрещивании белоглазой самки дрозофилы с красноглазым самцом (см. выше схему наследования крисс-кросс) в F 1 , помимо красноглазых самок и белоглазых самцов, появляются единичные белоглазые самки и красноглазые самцы. Причиной этого отклонения является нерасхождение Х-хромосом у исходной самки. В процессе гаметогенеза в яйцеклетку попадает не одна Х-хромосома, а обе, или же, наоборот, ни одной, а обе попадают в полярное тельце. При оплодотворении таких яйцеклеток нормальными сперматозоидами и развиваются красноглазые самцы и белоглазые самки.

Потомство, которое образуется в результате первичного нерасхождения хромосом у самки, имеет разные, не соответствующие норме сочетания и количество половых хромосом. Однако, генетическая инертность Y-хромосомы делает особей с кариотипом ХХY женскими и жизнеспособными, а с кариотипом Х0 — мужскими и также жизнеспособными. Зиготы, не получившие Х-хромосомы (Y0 ), погибают, так же как (за редким исключением) и зиготы с тремя Х-хромосомами.

Схема наследования белой окраски глаз у дрозофилы (ген white)
при нерасхождении X-хромосом у самки

У дрозофилы выведена линия (double yellow — двойная желтая), у которой из поколения в поколение нарушается наследование сцепленного с полом признака — желтая окраска тела. У самок этой линии Х-хромосомы соединены друг с другом в проксимальной части и имеют одну центромеру. В связи с этим в мейозе они ведут себя как одна хромосома и в анафазе отходят к одному полюсу.

Гетерогаметность одного пола определяет соответствие соотношения полов в каждом поколении организмов формуле 1: 1. Это соотношение совпадает с расщеплением при анализирующем скрещивании. Рассмотрим его на примере дрозофилы, у которой определение пола соответствует Lygaeus-типу. Набор хромосом у дрозофилы состоит из трех пар аутосом и двух половых хромосом. Самка образует один тип гамет с гаплоидным набором (3A+X), а самец в равных количествах два типа гамет (3A+X) и (3A+Y). В итоге в следующем поколении развивается одинаковое количество самок и самцов.

Такое наследование наблюдается при разных типах хромосомного механизма определения пола, и вероятность рождения потомков мужского и женского пола в норме одинакова. Однако баланс полов может быть нарушен, если в половых хромосомах возникают летальные мутации. Рассмотрим случай, когда рецессивная летальная мутация (l ) возникла в одной из двух Х-хромосом самки дрозофилы (X Bl ), маркированной доминантной мутацией Bar (В ) — полосковидные глаза. Рассмотрите схему скрещивания такой самки с нормальным самцом дикого типа (+), имеющим круглые глаза.

Как видно из схемы, появление рецессивной летальной мутации в одной из Х-хромосом самки приводит к гибели половины мужского потомства. Об этом судят по отсутствию самцов с полосковидными глазами, получившими от матери Х-хромосому с летальным геном (X Bl ).

Гены, определяющие признаки пола, имеются не только в половых хромосомах, но и в аутосомах. С другой стороны, признаки, которые наследуются сцепленно с полом, часто не имеют прямого отношения к полу. Существует особая категория признаков, которые проявляются только у одного пола. Это — ограниченные полом признаки . Определяющие их гены имеются у обоих полов и могут находиться как в половых хромосомах, так и аутосомах. Однако работают эти гены, т.е. проявляют свое действие на уровне фенотипа, только у одного пола. К числу таких признаков относятся, например, молочность и жирность молока у коров, яйценоскость и размер яиц у кур. Эти признаки, которыми обладают особи женского пола, могут целиком определяться генотипом отца. Такое явление широко используется в селекции животных при использовании отцовских особей-производителей для получения высококачественного потомства.

Гены, определяющие развитие вторичных половых признаков, имеются как у мужчин, так и у женщин, но их проявление контролируется гормонами.

Пол может оказывать влияние на характер проявления признака, т.е. на его доминантность или рецессивность. В этом случае признаки называют зависимыми от пола . Так, например, у овец ген, определяющий развитие рогов, является доминантным у самцов и рецессивным — у самок. В связи с этим гетерозиготные самки являются комолыми, а гетерозиготные самцы — рогатыми. У человека точно так же наследуется признак плешивости. Зависимые от пола признаки находятся под сильным влиянием половых гормонов, соотношение которых может либо усилить, либо ослабить экспрессию гена.

Итак, подведем итог, касающийся механизма определения пола. Пол, как любой другой признак организма, детерминирован генетически. В определении пола у большинства животных и растений основная роль принадлежит половым хромосомам. Расщепление по полу соответствует соотношению 1: 1, что обусловлено равновероятным образованием двух типов гамет (1/2 с Х и 1/2 с Y хр.) у гетерогаметного пола (XY ). Гетерогаметным может быть как мужской, так и женский пол.

Определение пола — это начальный этап становления пола, за которым следует процесс его дифференциации, приводящий к развитию двух разных половых типов — женского и мужского. У животных половая дифференциация затрагивает всю организацию особи: строение органов размножения, внешнюю морфологию, обмен веществ, поведение, гормональный баланс, продолжительность жизни и пр. Половые различия которые обеспечивают комбинативную изменчивость внутри вида, а также его изоляцию, являются адаптивным механизмом.

Различают первичные и вторичные половые признаки. Первые непосредственно обеспечивают осуществление полового процесса. В частности, к ним относятся различия в строении внешних и внутренних половых органов женских и мужских особей. Развитие вторичных половых признаков является результатом нормального функционирования гонад (т.е. опосредовано первичными половыми признаками) и способствует половому размножению. Регулируется развитие вторичных половых признаков с помощью половых гормонов.

На процесс дифференциации пола оказывают влияние как генотипические факторы, так и внешняя среда.

Еще в начале ХХ в. было высказано предположение, что зигота является потенциально бисексуальной, но существуют механизмы, осуществляющие дифференциацию пола. Одним из таких механизмов является баланс половых хромосом и аутосом, при нарушении которого развитие пола отклоняется либо в сторону женского, либо в сторону мужского пола. Необходимость такого баланса впервые была установлена в опытах К. Бриджеса (лаборатория Т. Моргана), который обнаружил линию дрозофилы, дающую наряду с нормальными самцами и самками большой процент интерсексов. Интерсексы представляют собой смесь первичных и вторичных мужских и женских половых признаков, образуя все переходные типы: от сходных в основном с самцами до сходных с самками. Все они стерильны. В опыте Бриджеса они возникли в потомстве триплоидных самок, оплодотворенных нормальными диплоидными самцами, и содержали три набора аутосом и нормальное количество половых хромосом: 2Х+3А. Наряду с типичными интерсексами, в потомстве были представлены особи с гипертрофированными признаками женского пола — суперсамки (3Х+2А), и мужского пола — суперсамцы (XY+3X).

На основании этих результатов Бриджес пришел к выводу, что не само присутствие двух половых хромосом (XX или XY) определяет развитие пола, а баланс половых хромосом и гаплоидных наборов аутосом. Поскольку у дрозофилы Y-хромосома генетически инертна, то важно только количество Х-хромосом. Все особи с отношением 2Х: 2А = 1 являются самками, особи с отношением 1Х: 2А = 0,5 — самцами, типы с промежуточными между 1 и 0,5 отношениями являются интерсексами, а отношения больше 1 дают суперсамок, меньше 0,5 — суперсамцов.

Аномальное развитие пола при изменении числа наборов аутосом обусловлено нарушением баланса генов, которые участвуют в развитии пола. Поскольку гены проявляют свое действие в конкретных условиях, то на их функционирование оказывают влияние внешние факторы. Так, потомство триплоидных самок дрозофилы воспитывалось в условиях высокой и низкой температур. В обоих случаях развивались интерсексы, но при высокой температуре преимущественно с признаками самки, а при пониженной — с признаками самца. Таким образом, окончательное развитие пола является результатом сложных взаимодействий генов, локализованных как в половых хромосомах, так и в аутосомах, друг с другом и с факторами окружающей среды.

Изначальная бисексуальность зигот подтверждается фактами переопределения пола в процессе индивидуального развития. Классический пример — морской червь Bonellia viridis. Свободноплавающие личинки этого червя развиваются в самок. Если же личинка остается прикрепленной к материнской особи, из нее развивается самец. Будучи отделена от самки, такая личинка, начавшая развиваться в самца, изменяет направление дифференциации пола в женскую сторону и из нее развивается интерсекс. В хоботке самки имеются химические регуляторы, способные переопределять пол личинок.

Большой интерес представляет экспериментальное переопределение пола. Путем воздействия гормональными препаратами у ряда животных удается получить полное превращение пола вплоть до способности формировать половые клетки противоположного пола. Такое превращение известно у некоторых лягушек, рыб, птиц и других животных. Так, раннее удаление яичника у самок кур и голубей может изменить в мужскую сторону окраску оперения, поведение и даже вызвать развитие семенника. У крупного рогатого скота наблюдались случаи рождения разнополых двойнь, в которых бычок оказывался нормальным, а телка — стерильной, со многими чертами самцового типа. Такие двойни носят название “фримартинов”. Их появление обусловлено тем, что семенники мужского эмбриона рано начинают выделять мужской гормон, который попадает в кровь и оказывает влияние на близнеца.

Один из ярких примеров полного переопределения пола описан в 1953 г. японским ученым Т. Ямамото. Опыт проводился на белых и красных медаках (Oryzias latipes), у которых доминантный ген красной окраски находится в Y-хромосоме. При такой локализации гена при скрещивании самцы всегда будут красными, а самки — белыми. Фенотипических самцов кормили с добавлением в корм женского полового гормона. В результате оказалось, что все красные рыбки с генотипом самца являются самками с нормальными яичниками и женскими вторичными половыми признаками.

Переопределение пола может быть следствием мутаций отдельных генов, участвующих в дифференциации пола. Так, у дрозофилы в одной из аутосом обнаружен рецессивный ген tra , присутствие которого в гомозиготном состоянии обусловливает развитие женских зигот (XX) в фенотипических самцов, оказывающихся стерильными. Самцы XY, гомозиготные по этому гену, являются плодовитыми.

Аналогичные гены найдены у растений. Так, у кукурузы рецессивная мутация silkless в гомозиготном состоянии вызывает стерильность семяпочек, в связи с чем обоеполое растение функционирует как мужское. У сорго обнаружены два доминантных гена, комплементарное взаимодействие которых также вызывает женскую стерильность.

У наездника Habrobracon пол определяется по тому же типу, что и у пчел: диплоидные самки развиваются из оплодотворенных яиц, а гаплоидные самцы партеногенетически. Но иногда самцы могут развиваться из оплодотворенных яиц. Причина такой ситуации лежит в действии специфического гена, в гомозиготном состоянии определяющего развитие зиготы по мужскому типу.

Правильность хромосомной теории определения пола подтверждается существованием половых мозаиков, или гинандроморфов , совмещающих в себе части тела мужского и женского полов. Известны разные типы гинандроморфов: латеральные, переднезадние, мозаичные.


Билатеральный гинандроморф
Drosophila melanogaster

Латеральный гинандроморфизм описан у насекомых, у кур, у певчих птиц. В этом случае одна половина тела соответствует женскому типу, вторая — мужскому. При мозаичном гинандроморфизме большая часть тела имеет признаки одного пола, и лишь отдельные участки — признаки противоположного пола. Этот тип описан, в частности, у дрозофилы. Чаще всего причиной появления гинандроморфов является утрата одной из двух Х-хромосом в раннем дроблении зиготы с кариотипом самки (ХХ). Клетки с кариотипом Х0 обнаруживают признаки мужского пола. Чем раньше произойдет элиминация Х-хромосомы, тем больше участков мужского типа будет представлено в теле взрослой мухи. Обнаруживаются такие мозаики по проявлению рецессивных генов, которые в зиготе находились в гетерозиготном состоянии, но проявились фенотипически в клетках с кариотипом Х0.

Еще одной причиной гинандроморфизма может быть развитие зародыша из яйцеклетки с двумя ядрами (дизиготический гинандроморфизм). В этом случае мозаики могут быть соматическими, если оба ядра имеют один и тот же набор половых хромосом, но разный генотип (например, одно ядро Аа, а другое — аа), или половыми, если одно ядро ХХ, а другое ХY, или теми и другими одновременно. Подобный тип гинандроморфизма описан у шелковичного червя, бабочки, дрозофилы.

Известен также гинандроморфизм, причиной которого является полиспермия. Он обнаружен у дрозофилы. В яйцеклетке дрозофилы могут сформироваться два женских гаплоидных пронуклеуса, с одной Х-хромосомой каждый. При проникновении в яйцеклетку двух сперматозоидов один пронуклеус может оплодотвориться сперматозоидом с Х-хромосомой, а другой — сперматозоидом с Y-хромосомой. После первого дробления образуются два бластомера, один с кариотипом ХХ, другой — ХY, что в дальнейшем приведет к развитию гинандроморфа.