Лежит в основе изменения кровяного. Что лежит в основе изменения кровяного давления человека в спокойном

Задания ЕГЭ по биологии

С1 практико-ориентированные задания

1. Действие алкоголя на организм вызывает расширение сосудов. Какой человек, трезвый или пьяный, быстрее замерзнет на морозе? Объясните почему.

С1 На электронных микрофотографиях в нейронах отмечается большое число мембран комплекса Гольджи. Объясните эту особенность, используя знания о функциях комплекса Гольджи.

5 Какую роль в жизни грибов играет грибница?

7. Какие отрицательные последствия для человека может иметь избыточное использование ядохимикатов для борьбы с насекомыми-вредителями?

С2 работа с тестом и рисунком

1.Назовите кости обозначенные на рисунке буквой Г. К какому отделу скелета верхних конечностей их относят? Каков тип соединения их с другими костями? У каких позвоночных впервые появилась конечность подобного типа?

2.C2. Какие клетки покровной ткани растения обозначены на рисунке под цифрой 1? Какие функции они выполняют? Чем их строение отличается от строения других клеток покровной ткани?

https://pandia.ru/text/80/082/images/image003_33.gif" width="252" height="190 src=">

3.Найдите ошибки в тексте. Укажите номера предложений, в которых сделаны ошибки, исправьте их.

Моллюски – тип беспозвоночных животных, которые произошли от древних кольчатых червей.2. Моллюски имеют замкнутую кровеносную систему. 3. У большинства моллюсков есть раковина. 4. Кальмары, осьминоги - брюхоногие моллюски. 5. Моллюски обитающие в воде, дышат только с помощью жабр. 6. Моллюски имеют складку кожи - мантию.

4. Найдите ошибки в тексте. Укажите номера предложений, в которых сделаны ошибки, исправьте их:

У человека движение крови по сосудам происходит вследствие разностей ее давлений в артериях и венах. 2. В легочной вене давление выше чем в легочной артерии.3. Снижение давления происходит за счет трения крови о стенки сосудов и клеток крови друг о друга. 4. Максимальное давление в сосудах регистрируется в период расслабления сердца, минимальное давление в сосудах проявляется в период сокращения сердца. 5. Во время сна кровяное давление повышается.6. Кровяное давление повышается под влиянием внешних факторов: при физической работе, в стрессовой ситуации.

Что лежит в основе изменения кровяного давления человека в спокойном состоянии во время работы? Какие отделы нервной системы это обеспечивают? С3. Какие виды кожных желез имеются у млекопитающих? Объясните, какие функции выполняют эти железы. С3 половину сосуда с эвгленами зелеными осветили, половину оставили в темноте. Как изменится поведение эвглен? Объясните их реакцию. Можно ли назвать ее рефлексом? Ответ поясните.

С4 Обобщение применение знаний в новой ситуации об эволюции органического мира и экологических закономерностях

1. С4. Как повлияет на растения и животных экосистемы сокращение численности редуцентов? Ответ поясните.

С4. Как повлияет на растения и животных экосистемы сокращение численности редуцентов? Ответ поясните.

Задания линии С5

1. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ЦГТ ТГГ ГЦТ АГГ ЦТТ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

2. В биосинтезе фрагмента молекулы белка участвовали последовательно молекулы тРНК с антикодонами АГЦ, АЦЦ, ГУА, ЦУА, ЦГА. Определите аминокислотную последовательность синтезируемого фрагмента молекулы белка и нуклеотидную последовательность участка двухцепочечной молекулы ДНК, в которой закодирована информация о первичной структуре фрагмента белка. Объясните последовательность ваших действий. Для решения задачи используйте таблицу генетического кода

3. У хламидомонады преобладающим поколением является гаметофит. Определите хромосомный набор споры и гамет хламидомонады. Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки при половом размножении.

4 С5 У зеленой водоросли улотрикса преобладающим поколением является гаметофит. Определите хромосомный набор взрослого организма и спорофита. Объясните, чем представлен спорофит, из каких исходных клеток и в результате какого процесса образуются взрослый организм и спорофит.

5.С5. Какой хромосомный набор характерен для вегетативной, генеративной клеток и спермиев пыльцевого зерна цветкового растения? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

6.Для соматической клетки животного характерен диплоидный набор хромосом. Определите хромосомный набор (n) и число молекул ДНК (с) в клетке в конце телофазы мейоза 1 и анафазы мейоза 2 . Объясните результаты в каждом случае.

7.С5. У крупного рогатого скота в соматических клетках 60 хромосом. Определите число хромосом и молекул ДНК в клетках яичников в интерфазе перед началом деления и после деления мейоза I. Объясните, как образуется такое число хромосом и молекул ДНК.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетках кончика корня перед началом митоза и в анафазе митоза. Поясните, какие процессы происходят в эти периоды и как они влияют на изменение числа ДНК и хромосом.

При анализирующем скрещивании высокого растения томата с округлыми плодами и карликового растения с грушевидными плодами (рецессивные признаки) в потомстве получено расщепление по фенотипу: 40 растений высоких с округлыми плодами; 9- высоких с грушевидными; 10 карликовых с округлыми плодами; 44 карликовых с грушевидными плодами. Определите генотипы родителей и полученного потомства. Составьте схему решения задачи. Объясните формирование четырех фенотипических групп в потомстве

С6 Потемнение зубов может определяться двумя разными доминантными генами: или аутосомным (А), или расположенным в Х-хромосоме (ХВ). В семье родителей, имеющих темные зубы, родились мальчик и девочка с нормальным цветом зубов. Известно, что темные зубы матери обусловлены только геном сцепленным с Х-хромомомой, а темные зубы отца-только аутосомным геном, по которому он гетерозиготен. Составьте схему решения задачи. Определите генотипы родителей, возможного потомства. Найдите вероятность рождении в этой семье по отдельности девочек и мальчиков без аномалий.

Это давление крови в артериях.

На величину кровяного давления влияют несколько факторов:

1 . Количество крови, поступающее в единицу времени в сосудистую систему.

2 . Интенсивность оттока крови на периферию .

3 . Ёмкость артериального отрезка сосудистого русла.

4 . Упругое сопротивление стенок сосудистого русла.

5 . Скорость поступления крови в период сердечной систолы.

6 . Вязкость крови

7 . Соотношение времени систолы и диастолы.

8 . Частота сердечных сокращений.

Таким образом , величина кровяного давления, в основном, определяется работой сердца и тонусом сосудов (главным образом, артериальных).

В аорте , куда кровь с силой выбрасывается из сердца, создается самое высокое давление (от 115 до 140 мм рт. ст.).

По мере удаления от сердца давление падает , так как энергия, создающая давление, расходуется на преодоление сопротивления току крови.

Чем выше сосудистое сопротивление , тем большая сила затрачивается на продвижение крови и тем больше степень падения давления на протяжении данного сосуда.

Так, в крупных и средних артериях давление падает всего на 10%, достигая 90 мм рт.ст.; в артериолах оно составляет 55 мм, а в капиллярах - падает уже на 85%, достигая 25 мм.

В венозном отделе сосудистой системы давление самое низкое.

В венулах оно равно 12, в венах - 5 и в полой вене - 3 мм рт.ст.

В малом круге кровообращения общее сопротивление току крови в 5-6 раз меньше , чем в большом круге . Поэтому давление в легочном стволе в 5-6 раз ниже , чем в аорте и составляет 20-30 мм рт.ст. Однако и в малом круге кровообращения наибольшее сопротивление току крови оказывают мельчайшие артерии перед своим разветвлением на капилляры.

Давление в артериях не является постоянным: оно непрерывно колеблется от некоторого среднего уровня.

Период этих колебаний различный и зависит от нескольких факторов.

1. Сокращения сердца , которые определяют самые частые волны, или волны первого порядка. Во время систолы желудочков приток крови в аорту и легочную артерию больше оттока , и давлением в них повышается.

В аорте оно составляет 110-125, а в крупных артериях конечностей 105-120 мм рт.ст.

Подъем давления в артериях в результате систолы характеризует систолическое или максимальное давление и отражает сердечный компонент артериального давления.

Во время диастолы поступление крови из желудочков в артерии прекращается и происходит только отток крови на периферию, растяжение стенок уменьшается и давление снижается до 60-80 мм рт.ст.

Спад давления во время диастолы характеризует диастолическое или минимальное давление и отражает сосудистый компонент артериального давления.


Для комплексной оценки , как сердечного, так и сосудистого компонентов артериального давления используют показатель пульсового давления.

Пульсовое давление - это разность между систолическим и диастолическим давлением, которое в среднем составляет 35-50 мм рт.ст.

Более постоянную величину в одной и той же артерии представляет среднее давление , которое выражает энергию непрерывного движения крови.

Так как продолжительность диастолического понижения давления больше, чем его систолического повышения, то среднее давление ближе к величине диастолического давления и вычисляется по формуле: СГД = ДД + ПД/3.

У здоровых людей оно составляет 80-95 мм рт.ст. и его изменение является одним из ранних признаков нарушения кровообращения.

Фаз дыхательного цикла , которые определяют волны второго порядка. Эти колебания менее частые, они охватывают несколько сердечных циклов и совпадают с дыхательными движениями (дыхательные волны): вдох сопровождается понижением кровяного давления , выдох - повышением.

Тонуса сосудодвигательных центров , определяющие волны третьего порядка.

Это еще более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн.

Колебания вызываются периодическим изменением тонуса сосудодвигательных центров, что чаще наблюдается при недостаточном снабжении мозга кислородом (при пониженном атмосферном давлении, после кровопотери, при отравлениях некоторыми ядами).

Колебания артериального давления имеют место ежедневно, у любого человека, в процессе нормального, здорового функционирования индивидуума. Некоторые физиологические процессы и действия могут привести к изменениям в уровнях артериального давления - это вполне нормально. Есть определенные условия и факторы образа жизни, которые могут негативно повлиять на нормальные физиологические процессы и вызвать более сильные колебания кровяного давления в течение дня.

Ваше кровяное давление в любой момент зависит от ряда факторов, связанных с вашим образом жизни. Артериальное давления является показателем, который характеризует, насколько интенсивно работает сердце, чтобы качать кровь по всему телу. Верхняя цифра кровяного давления называется систолическим давлением. Это число указывает на величину давления крови в момент сокращения сердечной мышцы. Нижнее число - это диастолическое давление, оно указывает на давление, когда сердце находится в состоянии покоя или между ударами (когда сердечная мышца пребывает в расслабленном состоянии). Нормальный диапазон кровяного давления находится в пределах от 100 до 130 для систолического и от 70 до 90 для диастолического. Определенная степень колебаний кровяного давления в течение дня является нормальным явлением, однако резкие или очень частые колебания могут указывать на некоторые проблемы со здоровьем.

Нормальная вариабельность кровяного давления

Нормальные ежедневные колебания артериального давления, вызванные естественными физиологическими процессами в организме можно наблюдать каждый день. В результате значения кровяного давления могут меняться от 10 до 15 мм. рт. ст. для систолического и от 5 до 10 мм. рт. ст. для диастолического между измерениями, произведёнными в состоянии покоя утром и в полдень. Так, для людей, у которых нормальное кровяное давление утром составляет 125/70, измерение в середине дня может показать значение 140/80. Изменения артериального давления, как правило, происходят без неприятных ощущений. Однако, резкие изменения могут привести к появлению неблагоприятных симптомов, таких как головная боль, головокружение или беспокойство. Если симптомы сохраняются в течение долгого времени, может быть оправдано обращение за медицинской помощью.

Гипертония

Людям с постоянным высоким кровяным давлением (140/90 или выше) ставится диагноз гипертония. Гипертония заставляет кровеносные сосуды, ведущие к сердцу и от сердца, сжиматься. В результате, сердце вынуждено интенсивно работать, чтобы перекачивать кровь через сосуды тела. У лиц, которые имеют гипертонию, можно обнаружить более выраженные колебания кровяного давления, в течение дня. Так как кровеносные сосуды уже сжаты, они становятся более чувствительными к изменениям в состоянии организма. Для людей с гипертонией, такие факторы, как стресс, физическая нагрузка или неправильное питание, могут привести к резкому изменению значения артериального давления.

Стресс

"Борьба или бегство" - это нормальный физиологический ответ на стресс, часть механизма выживания, который работает, чтобы подготовить тело к борьбе с проблемой (или опасностью) или к тому, чтобы убежать. Увеличение частоты сердечных сокращений и дыхания и повышение уровня адреналина являются физиологическими реакциями, которые имеют место, когда возникает предполагаемая угроза. Стресс, как и прочее умственное и эмоциональное напряжение, может вызвать подобные физиологические реакции. Увеличение частоты сердечных сокращений, вызванное стрессом может вызвать автоматическое повышение артериального давления - это нормальная реакция организма.

Реакции на лекарства и продукты

У некоторых людей, пищевая чувствительность и физиологическая реакция на некоторые препараты могут вызвать колебания уровня артериального давления. Люди, которые имеют аллергию на некоторые продукты, могут испытать состояние, которое называется анафилаксия. Бронхиальные пути могут распухнуть и закрыться. Быстрые сокращения сердца - это реакция на данную проблему, соответственно, поднимается уровень кровяного давления. Некоторые лекарства по рецепту, такие как антидепрессанты, иммунодепрессанты и противовоспалительные препараты, также могут вызвать сужение кровеносных сосудов и кровяное давление, соответственно, растёт. Ацетаминофен, противо-отечные препараты, кофеин и некоторые противозачаточные таблетки, имеют аналогичное влияние на артериальное давление.

Как правильно измерять кровяное давление

Для получения правильных значений необходимо измерять давление в покое. Перед измерением нужно посидеть и отдохнуть в тишине 5-15 минут. Повторное измерение нужно делать не ранее через 10 минут, чтобы сосуды расправились и отдохнули. Повторное измерение обычно даёт более низкие цифры, так как в состоянии покоя организм расслабляется и сердце работает менее интенсивно.

Следует понимать, что кровяное давление не может быть постоянной величиной. Каждый удар сердца несколько отличается по интенсивности от предыдущего. Любая физическая или эмоциональная нагрузка приводит к увеличению кровяного давления. Обычный разговор приводит к повышению давления на 10-15 мм. рт. ст. - это нормально.

Физический параметр - давление крови, играет большую роль в диагностике многих заболеваний.

Для измерения систолического и диастолического давления крови в медицине широко используется метод, предложенный Н.С. Коротковым.

В основе метода лежит определение систолического давления по возникновению характерных тонов и шумов, в момент начала прохождения крови по сосудам при достижении давления в сдавливающей манжете равного максимальному значению давления в сосуде. Тоны и шумы возникают в связи с турбулентным течением крови.

Диастолическое давление определяют по моменту исчезновения характерных тонов и шумов, в связи с переходом течения крови в сосуде из турбулентного в ламинарное.

Принцип этого метода показан на рисунке. Вначале производится накачивание манжетки сфнгмоманометра, что приводит к остановке артериального кровотока. Затем воздух из манжетки медленно выпускается, и, когда давление в манжетке становится ниже систолического, кровь начинает проходить через частично открытые просветы артерий. При этом течение крови будет турбулентным, поэтому движение крови сопровождается звуками Короткова, слышимыми в стетоскоп. Когда давление в манжетке падает ниже диастолического, тоны перестают прослушиваться, поскольку ток крови становится ламинарным.

  1. Пульсовые волны. Скорость распространения пульсовой волны.

Пульсовая волна – это волна повышенного давления, вызванная выбросом крови из левого желудочка в период систолы, распространяющаяся по аорте и артериям.

Пульсовая волна распространяется со скоростью 5 – 10 м/с, поэтому за время систолы (около 0,3 с) она распространяется на расстояние 1,5 – 3 м, что больше расстояния от сердца к конечностям.

Скорость пульсовой волны в крупных сосудах зависит от их параметров и определяется по формуле:

V = (E h)/ ( d)

Где E – модуль упругости h – толщина стенки сосуда  - плотность крови d – диаметр сосуда.

  1. Механические и электрические модели кровообращения.

Для изучения свойств и поведения органов кровообращения в различных условиях функционирования создаются модели, призванные раскрыть некоторые особенности физиологических механизмов их деятельности. Одна из них – механическая (см. схему).

Компрессионная камера

З

В (клапан)

L (кинетическая энергия)

R (резистивное сопротивление)

С (эластичность

десь источникU, дающий несинусоидальное переменное электрическое напряжение, служит аналогом сердца. Выпрямитель В служит аналогом сердечного клапана. Конденсатор С в течение полупериода накапливает заряд, а затем разряжается на резистор R, таким образом происходит сглаживание силы тока, протекающий через резистор. Действие конденсатора аналогично действию упругого резервуара (аорты, артерии), который сглаживает колебания давления крови в артериолах и капиллярах. Резистор является ЭЛЕКТРИЧЕСКИМ АНАЛОГОМ периферической сосудистой системы.

    Работа и мощность сердца. (Ремизов А.Н. стр.210-211)

Работа, совершаемая сердцем, затрачивается на преодоление сил давления и сообщение крови КИНЕТИЧЕСКОЙ ЭНЕРГИИ.

Во время систолы левым желудочком в аорту выбрасывается ОБЪЕМ крови, который называется УДАРНЫМ (Vу). Можно считать, что этот объем сердца продавливает по аорте сечением S на расстояние L при среднем давлении Р. Тогда работа состоит состоит из 2-х частей и расходуется:

    на преодоление сил давления и равна: А 1 = Fl = PSl = PV у

    на сообщение кинетической энергии этому объему крови: A 2 =mv 2 /2

= V у v 2 /2; где, - плотность крови; v - скорость крови в аорте;

Работа левого желудочка Ал=А 1 2 . Работа правого желудочка равняется 0,2 от работы левого. Поэтому работа сердца при одном сокращении: А=А л пр л +0,2А л =1,2А л =1,2 V у (P+ v 2 /2)

Если среднее давление P=13кПа, V у =60мл,  =1051,03кг/м3, v =0,5м/с то за одно сокращение A=1Дж.

    Основные положения гемодинамики.

    Движение крови по сосудам обусловлено разностью давления в начальном и конечном участках кровяного русла.

    Объёмная скорость кровотока (объём крови протекающий через поперечное сечение сосудистого русла в единицу времени) вычисляется по формуле:

Q = (p2 - p1)/X, где X - периферическое сопротивление сосудистого русла, (p2 - p1) - разность давления в начале и в конце русла.

    Линейная скорость кровотока вычисляется по формуле: V=Q/S Периферическое сопротивление сосуда - X = 8 l /(R 4 ), где l -

длина сосуда, R - его радиус,  - коэффициент вязкости. Выводится на основании аналогий законов Ома и Пуазейля (движение электричества и жидкости описываются общими соотношениями. Гидравлическое сопротивление в значительной степени зависит от радиуса сосудов. Отношение радиусов для различных участков сосудистого русла: Rаорт:Rар:Rкап =3000:500:1.

    Незатухающие колебания. Уравнения незатухающих колебаний. (Ремезов. С.130 – 131).

Колебаниями называются повторяющиеся движения или изменения состояния.

Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями .

Х = А соs ( 0 t + 0 ), где Х – значение физической величины в момент времени t А – амплитуда колебаний (максимальное отклонение от положения равновесия) t - время  0 – круговая частота колебаний ( 0 t + 0) =  - фаза колебаний  0 – начальная фаза колебаний.

Гармонические колебания при отсутствии сил трения являются незатухающими.

Кровяное давление .

Кровяное давление - давление крови на стенки кровеносных сосудов и камер сердца; важнейший энергетический параметр системы кровообращения, обеспечивающий непрерывность кровотока в кровеносных сосудах, диффузию газов и фильтрацию растворов ингредиентов плазмы крови через мембраны капилляров в ткани (обмен веществ), а также в почечных клубочках (образование мочи).

В соответствии с анатомо-физиологическим разделением сердечно-сосудистой системы различают внутрисердечное, артериальное, капиллярное и венозное кровяное давление , измеряемое либо в миллиметрах водяного столба (в венах), либо миллиметрах ртутного столба (в других сосудах и в сердце). Рекомендуемое, согласно Международной системе единиц (СИ), выражение величин кровяного давления в паскалях (1 мм рт. ст . = 133,3 Па ) в медицинской практике не используется. В артериальных сосудах, где кровяное давление , как и в сердце, значительно колеблется в зависимости от фазы сердечного цикла, различают систолическое и диастолическое (в конце диастолы) артериальное давление, а также пульсовую амплитуду колебаний (разница между величинами систолического и диастолического АД), или пульсовое АД. Среднюю от изменений за весь сердечный цикл величину К. д. , определяющую среднюю скорость кровотока в сосудах, называют средним гемодинамическим давлением.

Измерение кровяного давления относится к наиболее широко применяемым дополнительным методам обследования больного , т.к., во-первых, обнаружение изменений кровяного давления имеет важное значение в диагностике многих болезней сердечно-сосудистой системы и различных патологических состояний; во-вторых, резко выраженное повышение или понижение К. д. само по себе может быть причиной тяжелых гемодинамических расстройств, угрожающих жизни больного. Наиболее распространено измерение артериального давления в большом круге кровообращения. В условиях стационара при необходимости измеряют давление в локтевой или других периферических венах; в специализированных отделениях с диагностической целью нередко измеряют кровяное давление в полостях сердца, аорте, в легочном стволе, иногда в сосудах портальной системы. Для оценки некоторых важных параметров системной гемодинамики в ряде случаев необходимо измерять центральное венозное давление - давление в верхней и нижней полых венах.

Особенности структуры капилляров клубочков почек обеспечивают высокий уровень кровяного давления и положительное фильтрационное давление на всем протяжении капиллярных петель клубочка, что способствует большой скорости образования экстракапиллярного ультрафильтрата - первичной мочи. Выраженная зависимость мочеобразовательной функции почек от К. д. в артериолах и капиллярах клубочков объясняет особую физиологическую роль почечных факторов в регуляции величины кровяного давления в артериях больше о круга кровообращения.

Механизмы регуляции кровяного давления . Устойчивость кровяного давления в организме обеспечивается функциональными системами , поддерживающими оптимальный для метаболизма тканей уровень артериального давления. Основным в деятельности функциональных систем является принцип саморегуляции, благодаря которому в здоровом организме любые эпизодические колебания АД, вызванные действием физических или эмоциональных факторов, через определенное время прекращаются, и АД возвращается к исходному уровню. Механизмы саморегуляции АД в организме предполагают возможность динамичного формирования противоположных по конечному влиянию на К. д. изменений гемодинамики, называемых прессорными и депрессорными реакциями, а также наличие системы обратной связи. Прессорные реакции, приводящие к повышению АД, характеризуются увеличением минутного объема кровообращения (за счет возрастания систолического объема или учащения сердечных сокращений при неизменном систолическом объеме), повышением периферического сопротивления в результате сужения сосудов и возрастания вязкости крови, увеличением объема циркулирующей крови и др. Депрессорные реакции, направленные на снижение АД, характеризуются уменьшением минутного и систолического объемов, снижением периферического гемодинамического сопротивления за счет расширения артериол и уменьшения вязкости крови. Своеобразной формой регуляции кровяного давления является перераспределение регионарного кровотока, при котором повышение АД и объемной скорости крови в жизненно важных органах (сердце, головной мозг) достигается за счет кратковременного уменьшения этих показателей в других, менее значимых для существования организма органах.

Регуляция К. д. осуществляется комплексом сложно взаимодействующих нервных и гуморальных влияний на тонус сосудов и деятельность сердца. Управление прессорными и депрессорными реакциями связано с деятельностью бульбарных сосудодвигательных центров, контролируемой гипоталамическими, лимбико-ретикулярными структурами и корой большого мозга, и реализуется через изменение активности парасимпатических и симпатических нервов, регулирующих тонус сосудов, деятельность сердца, почек и эндокринных желез, гормоны которых участвуют в регуляции кровяного давления . Среди последних наибольшее значение имеют АКТГ и вазопрессин гипофиза, адреналин и гормоны коры надпочечников, а также гормоны щитовидной и половых желез. Гуморальное звено регуляции К. д. представлено также системой ренин - ангиотензин, активность которой зависит от режима кровоснабжения и функции почек, простагландинами и рядом иных вазоактивных субстанций различного происхождения (альдостерон, кинины, вазоактивный интестинальный пептид, гистамин, серотонин и др.). Быстрая регуляция кровяного давления , необходимая, например, при изменениях положения тела, уровня физической или эмоциональной нагрузок, осуществляется в основном динамикой активности симпатических нервов и поступления в кровь адреналина из надпочечников. Адреналин и норадреналин, выделяющийся на скончаниях симпатических нервов, возбуждают a -адренорецепторы сосудов, повышая тонус артерий и вен, и b -адренорецепторы сердца, увеличивая сердечный выброс, т.е. обусловливают развитие прессорной реакции.

Механизм обратной связи, определяющий изменения степени активности сосудодвигательных центров противоположно отклонениям величины кровяного давления в сосудах, обеспечивается функцией барорецепторов в сердечно-сосудистой системе, из которых наибольшее значение имеют барорецепторы синокаротидной зоны и артерий почек. При повышении АД возбуждаются барорецепторы рефлексогенных зон, усиливаются депрессорные влияния на сосудодвигательные центры, что приводит к снижению симпатической и повышению парасимпатической активности с одновременным уменьшением образования и выделения гипертензивных веществ. В результате снижается нагнетательная функция сердца, расширяются периферические сосуды и как следствие уменьшается АД. При снижении АД появляются противоположные влияния: повышается симпатическая активность, включаются гипофизарно-надпочечниковые механизмы, система ренин - ангиотензин.

Секреция ренина юкстагломерулярным аппаратом почек закономерно возрастает при снижении пульсового АД в почечных артериях, при ишемии почек, а также при дефиците в организме натрия. Ренин превращает один из белков крови (ангиотензиноген) в ангиотензин I, являющийся субстратом для образования в крови ангиотензина II, вызывающего при взаимодействии со специфическими рецепторами сосудов мощную прессорную реакцию. Один из продуктов преобразования ангиотензина (ангиотензин III) стимулирует секрецию альдостерона, изменяющего водно-солевой обмен, что также сказывается на величине К. д. Процесс образования ангиотензина II происходит с участием ангиотензинконвертирующих ферментов, блокада которых, как и блокада рецепторов ангиотензина II в сосудах, устраняет гипертензивные эффекты, связанные с активацией системы ренин - ангиотензин.

Изменения кровяного давления в полостях сердца наблюдаются при поражениях миокарда, значительных отклонениях величин К. д. в центральных артериях и венах, а также при нарушениях внутрисердечной гемодинамики, в связи с чем измерение внутрисердечного кровяного давления производят для диагностики врожденных и приобретенных пороков сердца и крупных сосудов. Повышение К. д. в правом или левом предсердиях (при пороках сердца, сердечной недостаточности) приводит к системному повышению давления в венах большого или малого круга кровообращения.

Артериальная гипертензия, т.е. патологическое повышение АД в магистральных артериях большого круга кровообращения (до 160/100 мм рт. ст . и более), может быть обусловлена увеличением ударного и минутного объемов сердца, повышением кинетики сердечного сокращения, ригидностью стенок артериальной компрессионной камеры, но в большинстве случаев определяется патологическим ростом периферического сопротивления кровотоку (см. Гипертензия артериальная ). Поскольку регуляция АД осуществляется сложным комплексом нейрогуморальных влияний с участием ц.н.с., почечных, эндокринных и других гуморальных факторов, артериальная гипертензия может быть симптомом различных болезней, в т.ч. болезней почек - гломерулонефрита (см. Нефриты ), пиелонефрита , мочекаменной болезни , гормонально - активных опухолей гипофиза (см. Иценко - Кушинга болезнь ) и надпочечников (например, альдостеромы, хромаффиномы . ), тиреотоксикоза ; органических заболеваний ц.н.с.; гипертонической болезни . Повышение кровяного давления в малом круге кровообращения (см. Гипертензия малого круга кровообращения ) может быть симптомом патологии легких и легочных сосудов (в частности, тромбоэмболии легочных артерий ), плевры, грудной клетки, сердца. Устойчивая артериальная гипертензия приводит к гипертрофии сердца, развитию дистрофии миокарда и может быть причиной сердечной недостаточности .

Патологическое снижение АД может быть следствием поражения миокарда, в т.ч. острого (например, при инфаркте миокарда ), снижения периферического сопротивления кровотоку, кровопотери, секвестрации крови в емкостных сосудах при недостаточности венозного тонуса. Это проявляется ортостатическими расстройствами кровообращения , а при остром резко выраженном падении К. д. - картиной коллапса, шока, анурией. Устойчивая гипотензия артериальная наблюдается при заболеваниях, сопровождающихся недостаточностью гипофиза, надпочечников. При окклюзии артериальных стволов кровяное давление снижается только дистальнее места окклюзии. Значительное снижение К. д. в центральных артериях вследствие гиповолемии включает адаптационные механизмы так называемой централизации кровообращения - перераспределения крови преимущественно в сосуды головного мозга и сердца при резком повышении тонуса сосудов на периферии. При недостаточности этих компенсаторных механизмов возможны обморок , ишемические повреждения мозга (см. Инсульт ) и миокарда (см. Ишемическая болезнь сердца ).

Повышение венозного давления наблюдается либо при наличии артериовенозных шунтов, либо при нарушениях оттока крови из вен, например в результате их тромбоза, сдавливания либо вследствие повышения кровяного давления в предсердии. При циррозах печени развивается портальная гипертензия .

Изменения капиллярного давления обычно являются следствием первичных изменений К. д. в артериях или венах и сопровождаются нарушениями кровотока в капиллярах, а также процессов диффузии и фильтрации на капиллярных мембранах (см. Микроциркуляция ). Гипертензия в венозной части капилляров приводит к развитию отека, общего (при системной венозной гипертензии) или местного, например при флеботромбозе, сдавлении вен (см. Стокса воротник ). Повышение капиллярного кровяного давления в малом круге кровообращения в подавляющем большинстве случаев связано с нарушением оттока крови из легочных вен в левое предсердие. Это происходит при левожелудочковой сердечной недостаточности, митральном стенозе, наличии в полости левого предсердия тромба или опухоли, резко выраженной тахисистолии при мерцательной аритмии . Проявляется одышкой, кардиальной астмой, развитием отека легких.

МЕТОДЫ И ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ КРОВЯНОГО ДАВЛЕНИЯ

В практике клинических и физиологичских исследований сложились и широко используются методы измерения артериального, венозного и капиллярного давления в большом круге кровообращения, в центральных сосудах малого круга, в сосудах отдельных органов и частей тела. Различают прямые и непрямые методы измерения К. д. Последние основаны на измерении внешнего давления на сосуд (например, давления воздуха в манжете, наложенной на конечность), уравновешивающего кровяного давления внутри сосуда.

Прямое измерение кровяного давления (прямая манометрия) осуществляется непосредственно в сосуде или полости сердца, куда вводят заполненный изотоническим раствором катетер, передающий давление на внешний измерительный прибор или зонд с измерительным преобразователем на вводимом конце (см. Катетеризация ). В 50-60-е гг. 20 в. прямую манометрию стали объединять с ангиографией, внутриполостной фонокардиографией, электрогисографией и др. Характерной чертой современного развития прямой манометрии является компьютеризация и автоматизация обработки получаемых данных. Прямое измерение К. д. осуществляется практически в любых участках сердечно-сосудистой системы и служит базовым методом для проверки результатов непрямых измерений кровяного давления.

Достоинством прямых методов является возможность одновременного отбора через катетер проб крови для биохимических анализов и введения в кровеносное русло необходимых лекарственных средств и индикаторов. Основным недостатком прямых измерений является необходимость проведения в кровяное русло элементов измерительного устройства, что требуют строгого соблюдения правил асептики, ограничивает возможность повторных измерений. Некоторые виды измерений (катетеризация полостей сердца, сосудов легких, почек, головного мозга) фактически являются хирургическими операциями и выполняются только в условиях стационара.

Измерение давления в полостях сердца и центральных сосудах возможно только прямым методом. Измеряемыми величинами являются мгновенное давление в полостях, среднее давление и другие показатели, которые определяются посредством регистрирующих или показывающих манометров, в частности электроманометра.

Входным звеном электроманометра является датчик. Его чувствительный элемент - мембрана непосредственно контактирует с жидкой средой, по которой передается давление. Перемещения мембраны, обычно составляющие доли микрона, воспринимаются как изменения электрического сопротивления, емкости или индуктивности, преобразуемые в электрическое напряжение, измеряемое выходным прибором.

Метод является ценным источником физиологической и клинической информации, используется для диагностики, в частности пороков сердца, контроля эффективности оперативной коррекции нарушений центрального кровообращения, при длительных наблюдениях в условиях реанимации и в некоторых других случаях.

Прямое измерение артериального давления у человека проводится лишь в случаях, когда необходимо постоянное и длительное наблюдение за уровнем кровяного давления с целью своевременного обнаружения его опасных изменений. Такие измерения применяют иногда в практике наблюдения за больными в блоках реанимации, а также во время некоторых хирургических операций.

Для измерения капиллярного давления применяют электроманометры; для визуализации сосудов используют стереоскопические и телевизионные микроскопы. Микроканюлю, соединенную с манометром и источником внешнего давления и заполненную физиологическим раствором, с помощью микроманипулятора под контролем микроскопа вводят в капилляр или его боковую ветвь. Среднее давление определяют по величине создаваемого внешнего (задаваемого и регистрируемого манометром) давления, при котором кровоток в капилляре останавливается. Для изучения колебаний капиллярного давления используют непрерывную его запись после введения микроканюли в сосуд. В диагностической практике измерение капиллярного К. д. практически не используется.

Измерение венозного давления также осуществляют прямым методом. Прибор для измерения венозного кровяного давления состоит из сообщающихся между собой системы капельного внутривенного вливания жидкости, манометрической трубки и резинового шланга с инъекционной иглой на конце. Для разовых измерений К д. систему капельного вливания не используют; ее подключают при необходимости непрерывной длительной флеботонометрии, в процессе которой из системы капельного вливания постоянно поступает жидкость в измерительную магистраль и из нее в вену. Это исключает тромбирование иглы и создает возможность многочасового измерения венозного К. д. Простейшие измерители венозного давления содержат лишь шкалу и манометрическую трубку из пластического материала, предназначенную для однократного использования.

Для измерения венозного кровяного давления применяют также электронные манометры (с их помощью возможно также измерение К. д. в правых отделах сердца и легочном стволе). Измерение центрального венозного давления осуществляется через тонкий полиэтиленовый катетер, который проводят в центральные вены через локтевую подкожную либо через подключичную вену. При длительных измерениях катетер остается присоединенным и может использоваться для взятия проб крови, введения лекарственных препаратов.

Непрямое измерение кровяного давления осуществляется без нарушения целостности сосудов и тканей. Полная атравматичность и возможность неограниченных повторных измерений кровяного давления обусловили широкое применение этих методов в практике диагностических исследований.

Методы, основанные на принципе уравновешивания давления внутри сосуда известным внешним давлением, называют компрессионными. Компрессия может создаваться жидкостью, воздухом или твердым телом. Наиболее распространен способ компрессии с помощью надувной манжеты, накладываемой на конечность или сосуд и обеспечивающей равномерное циркулярное сжатие тканей и сосудов. Впервые компрессионная манжета для измерения АД была предложена в 1896 г. Рива-Роччи (S. Riva-Rocci).

Изменения внешнего по отношению к кровеносному сосуду давления в ходе измерения кровяного давления могут иметь характер медленного плавного повышения давления (компрессия), плавного понижения ранее созданного высокого давления (декомпрессия), а также следовать изменениям внутрисосудистого давления. Первые два режима используют для определения дискретных показателей кровяного давления (максимального, минимального и др.), третий - для непрерывной регистрации кровяного давления аналогично методу прямого измерения. В качестве критериев идентификации равновесия внешнего и внутрисосудистого давлений пользуются звуковыми, пульсовыми явлениями, изменениями кровенаполнения тканей и кровотока в них, а также другими феноменами, вызванными сжатием сосудов.

Измерение артериального давления обычно производят в плечевой артерии, в которой оно близко аортальному. В ряде случаев измеряют давление в артериях бедра, голени, пальцев кистей и других областей тела. Систолическое АД может быть определено по показаниям манометра в тот момент компрессии сосуда, когда исчезает пульсация артерии в ее дистальной от манжеты части, что можно определить с помощью пальпации пульса на лучевой артерии (пальпаторный метод Рива-Роччи).

Наиболее распространен в медицинской практике звуковой, или аускультативный, метод непрямого измерения АД по Короткову с помощью сфигмоманометра и фонендоскопа (сфигмоманометрия). В 1905 г. Н.С. Коротков установил, что если на артерию подать внешнее давление, превышающее диастолическое, в ней возникают звуки (тоны, шумы), которые прекращаются, как только внешнее давление превысит систолический уровень.

Для измерения АД по Короткову на плечо обследуемого плотно накладывают специальную пневматическую манжету нужного типоразмера (в зависимости от возраста и телосложения обследуемого), которую через тройник соединяют с манометром и с устройством для нагнетания в манжету воздуха. Последнее обычно состоит из эластической резиновой груши, имеющей обратный клапан и вентиль для медленного выпускания воздуха из манжеты (регуляция режима декомпрессии). Конструкция манжет включает приспособления для их крепления, из которых наиболее удобными являются покрытия матерчатых концов манжеты специальными материалами, обеспечивающими слипание соединенных концов и надежное удержание манжеты на плече. С помощью груши в манжету нагнетают воздух под контролем показаний манометра до величины давления, заведомо превышающей систолическое АД, затем, стравливая давление из манжеты путем медленного выпускания из нее воздуха, т.е. в режиме декомпрессии сосуда, одновременно выслушивают с помощью фонендоскопа плечевую артерию в локтевом изгибе и определяют моменты появления и прекращения звуков, сопоставляя их с показаниями манометра. Первый из этих моментов соответствует систолическому, второй - диастолическому давлению.

В СССР выпускают несколько типов сфигмоманометров для измерения АД звуковым способом. Наиболее простыми являются ртутный и мембранный манометры, по шкалам которых АД может быть измерено в диапазоне соответственно 0-260 мм рт. ст . и 20-300 мм рт. ст . с погрешностью от ± 3 до ± 4 мм рт. ст . Менее распространены электронные измерители АД со звуковой и (или) световой сигнализацией и стрелочным либо цифровым указателем систолического и диастолического АД. Манжеты таких приборов имеют встроенные микрофоны для восприятия тонов Короткова.

Предложены различные инструментальные методы непрямого измерения АД, основанные на регистрации во время компрессии артерии изменений кровенаполнения дистального участка конечности (волюмометрический метод) или характера осцилляций, связанных с пульсацией давления в манжете (артериальная осциллография). Разновидностью осцилляторного метода является артериальная тахоосциллография по Савицкому, которую проводят с помощью механокардиографа (см. Механокардиография ). По характерным изменениям тахоосциллограммы в процессе компрессии артерии определяют боковое систолическое, среднее и диастолическое АД. Для измерения среднего АД предложены и другие методы, однако они менее распространены, чем тахоосциллография.

Измерение капиллярного давления неинвазивным способом впервые было осуществлено Крисом (N. Kries) в 1875 г. путем наблюдения за изменением цвета кожи под действием приложенного извне давления. Величина давления, при которой кожа начинает бледнеть, принимается за давление крови в поверхностно расположенных капиллярах.

Современные непрямые методы измерения давления в капиллярах основаны также на компрессионном принципе. Компрессию осуществляют прозрачными маленькими жесткими камерами разных конструкций или прозрачными эластическими манжетами, которые накладывают на исследуемую область (кожу, ногтевое ложе и др.). Место сжатия хорошо освещают для наблюдения за сосудистой сетью и кровотоком в ней под микроскопом. Капиллярное давление измеряют в ходе компрессии или декомпрессии микрососудов. В первом случае его определяют по компрессионному давлению, при котором произойдет остановка кровотока в большинстве видимых капилляров, во втором - по уровню компрессионного давления, при котором в нескольких капиллярах возникнет кровоток. Непрямые методы измерения капиллярного давления дают значительные расхождения результатов.

Измерение венозного давления также возможно непрямыми методами. Для этого предложены две группы методов: компрессионные и так называемые гидростатические. Компрессионные методы оказались недостоверными и не получили применения. Из гидростатических методов наиболее простым является метод Гертнера. Наблюдая за тыльной поверхностью руки при ее медленном поднятии, отмечают, на какой высоте спадаются вены. Расстояние от уровня предсердия до этой точки служит показателем венозного давления. Достоверность этого метода также невелика ввиду отсутствия четких критериев полного уравновешивания внешнего и внутрисосудистого давления. Тем не менее простота и доступность делают его полезным для ориентировочной оценки венозного давления во время осмотра больного в любых условиях.

Библиогр.: гайтон А. Физиология кровообращения, пер с англ., М., 1969, Дембо А.Г., Левин М.Я. и Левина Л.И. Артериальное давление у спортсменов, М., 1969; Савицкий Н.Н. Биофизические основы кровообращения и клинические методы изучения гемодинамики, Л., 1974, библиогр.; Студеникин М.Я. и Абдуллаев А.Р. Гипертонические и гипотонические состояния у детей и подростков, М., 1973, библиогр.; Токарь А.В. Артериальная гипертония и возраст, Киев, 1977, библиогр.; Тонких А.В. Гипоталамо-гипофизарная область и регуляция физиологических функций организма, Л., 1968, библиогр.; Фолков Б. и НилЭ. Кровообращение, пер. с англ., М., 1976; Эман А.А. Биофизические основы измерения артериального давления, Л., 1983.