Математические игры и головоломки. Математические головоломки для школьников

ГОРОДСКОЙ КЛАССИЧЕСКИЙ ЛИЦЕЙ

РЕФЕРАТ

Математические игры и головоломки

Подготовил:

Петров А. А.,

Математические игры и головоломки очень популярны, как, впрочем, и все игры. И далеко не всегда более сложная игра – более интересная. Часто миллионы людей с неугасаемым интересом играют в самые простые игры, и именно эти игры больше всего ценят, именно они входят в историю математики и прославляют своих создателей.

Наиболее приближенными к математике являются головоломки, но много головоломок образовалось из когда-то существовавших (а некоторые из ещё существующих) игр. Большинство таких основополагающих игр было придумано древнегреческими математиками.

В последнее время математическим играм внимание уделяется, в основном, для нахождения выигрышных стратегий, на что сильно повлияло распространение программирования: составить алгоритм, по которому в игру смог бы играть компьютер, часто бывает сложнее и интереснее, нежели самому научиться играть в неё, при этом глубже вникаешь в суть игры, после чего выиграть в неё можешь уже практически любого.

Игры

Простейшие математические игры часто используют как задачи, в которых нужно найти выигрышную стратегию, либо одно положение перевести в другое. Иногда задачи бывают весьма простыми, когда они решаются известными методами, такими как инвариант и раскраска, но есть и весьма простые, но до сих пор неразрешённые задачи, связанные с математическими играми.

Примером может являться популярная игра крестики-нолики на бесконечном поле (рендзю). Она, как известно, при правильной стратегии обоих игроков бесконечна, но выигрышную стратегию при этом никто не знает. В настоящее время придумано множество алгоритмов этой игры, основанных, прежде всего, на переборе различных вариантов и анализе игры на следующие несколько ходов, которые очень близки к выигрышной стратегии, но лишь при их реализации на компьютере – человек же им следовать практически не может. Существуют простейшие приёмы этой игры, которыми пользуются игроки, но решающей чаще всего бывает внимательность.

Игра ним и другие аналогичные игры

Существует несколько игр, в которых двое играющих A и B, руководствуясь определёнными правилами, по очереди вынимают то или иное число фишек из одной или нескольких кучек – побеждает тот, кто берёт последнюю фишку. Простейшая такая игра – это игра с одной кучкой фишек, и сделать ход в ней – значит взять из кучки любое число фишек от 1 до m включительно. Многие подобные игры поддаются исследованию с помощью числа Шпрага-Гранди G(C). Пустой позиции O, не содержащей фишек, отвечает G(O)=0. Комбинацию кучек, состоящих соответственно из x, y, … фишек, обозначим C=(x, y, …) и предположим, что допустимые ходы переводят C в другие комбинации: D, E, … Тогда G(C) есть наименьшее неотрицательное число, отличное от G(D), G(E), … Это позволяет по индукции определить G(C) для любой комбинации C, разрешённой правилами игры. Так, в упомянутой задаче G(x)=x mod (m+1).

Если G(C)>0, то игрок, делающий следующий ход, допустим, это игрок A, может обеспечить себе выигрыш, если ему удастся перейти к «безопасной» комбинации S с G(S)=0. Действительно, по определению G(S) в этом случае либо S – пустая позиция, и тогда A уже выиграл, либо B следующим ходом должен перейти к «опасной» позиции U с G(U)>0 – и тогда всё повторяется снова. Такая игра после конечного числа ходов заканчивается победой A.

К подобным играм относится ним . Имеется произвольное число кучек фишек, и игроки по очереди выбирают одну какую-то кучку и вынимают из неё любое число фишек (но хотя бы одну обязательно).

Более общий случай представляет игра Мура , которую также можно назвать k-ним. Правила её те же, что и в обычном ниме (1-ним), но здесь разрешается бать фишки из любого количества кучек, не превосходящего k.

Ещё одна подобная игра – Кегли . В ней фишки разложены в ряд, и при каждом ходе убирается одна какая-либо фишка или две соседние. При этом ряд может разбиться на два меньших ряда. Выигрывает тот, кто возьмёт последнюю фишку. Обобщённая вариация этой игры известна под именем игры Витхоффа .

Есть интересная вариация игры ним под названием «звёздный ним» . Она довольно проста, но стратегия в ней видна не сразу. Играют в эту игру на звездообразной фигуре, изображённой на рис. 1, слева. Поставьте по одной фишке на каждую из девяти вершин звезды. Игроки A и B делают ходы по очереди, снимая при каждом ходе либо одну, либо две фишки, соединённые отрезком прямой. Тот, кто снимает последнюю фишку выигрывает.

У игрока B при игре в звёздный ним есть выигрышная стратегия, использующая симметрию игровой доски (вообще, выигрышные стратегии многих математических игр строятся на этом). Представим, что отрезки прямых, соединяющие вершины звезды, – это нити. Тогда всю конфигурацию можно развернуть в окружность, топологически эквивалентную нитяной звезде. Если A снимает с окружности одну фишку, то B снимает две фишки с противоположного участка окружности. Если A берёт две фишки, то B снимает с противоположного участка окружности одну фишку. В обоих случаях на окружности остаются две группы из трёх фишек. Какую бы фишку (или какие бы фишки) ни взял A из одной группы, B берёт соответствующую фишку (или фишки) из другой группы. Ясно, что последняя фишка достанется игроку B.

Другие математические игры

В конце 60-х годов Дж. Леутуэйт из шотландского города Терсо изобрёл замечательную игру с искусно скрытой стратегией «парных ходов», обеспечивающей второму игроку заведомый выигрыш. На доске размером 5*5 квадратных клеток в шахматном порядке расставлены 13 чёрных и 12 белых фишек, после чего любая из чёрных фишек, например, стоящая на центральном поле, снимается (рис. 2, слева).

Игрок A ходит белыми фишками, игрок B – чёрными. Ходы делаются по вертикали и горизонтали. Проигравшим считается тот из игроков, кто первым не сможет сделать очередной ход. Если доску раскрасить подобно шахматной доске, то станет ясно, что каждая фишка со своего поля переходит на поле другого цвета и что ни одну фишку нельзя заставить ходить дважды. Следовательно, игра для каждого игрока не может продолжаться более 12 ходов. Но она может окончиться и раньше выигрышем для любого игрока, если только B не будет придерживаться рациональной стратегии.

Рациональная стратегия для игрока В состоит в том, чтобы мысленно представить себе всю матрицу (за исключением пустой клетки), покрытую двенадцатью неперекрывающимися костями домино. Как именно они разложены на доске, не имеет значения. На рис. 2, справа показан один из способов покрытия доски костями домино. Какой бы ход ни сделал игрок А, В просто делает ход на ту кость домино, которую только что покинул А. При такой стратегии у В всегда есть ход после очередного хода А, поэтому В заведомо выигрывает за 12 или за меньшее число ходов.

В игру Леутуэйта можно играть не только фишками на доске, но и квадратными плитками или кубиками, передвигаемыми внутри плоской коробочки, на дне которой начерчена матрица. Предположим теперь, что в правила игры внесена поправка, позволяющая любому игроку в любое время ходить любым числом (от 1 до 4) фишек, стоящих на одной горизонтали или вертикали, если первая и последняя фишки в выбранной им горизонтали или вертикали «его» цвета. Перед нами великолепный пример того, как тривиальное (на первый взгляд) изменение правила приводит к резкому усложнению анализа игры. Леутуэйту не удалось найти выигрышную стратегию ни для одного из игроков в этом варианте игры.

Большинство игр, рассмотренных нами, имели выигрышную стратегию, но это не значит, что практически у всех подобных игр она существует. Есть множество игр, выигрышную стратегию в которых на сегодняшний день ещё не изобрели, а есть много и таких, у которых таковой вообще нет.

Головоломки

Математические головоломки бывают самые разные: вращательные (кубик Рубика), «Волшебные кольца», «Игры с дыркой» (пятнашки), решётчатые и многие другие. Мы рассмотрим лишь некоторые из них.

Вращательные головоломки

Вращательными называются головоломки, суть которых заключается в поворотах рядов кубиков (и не только кубиков), из которых они состоят.

Знаменитейшая головоломка нашего времени – кубик Рубика – начала своё победное шествие по свету с 1978 года, когда с ней впервые ознакомились математики на Международном математическом конгрессе в Хельсинки. Лишь несколько кубиков увезли математики с конгресса, но это стало начальным толчком лавинного распространения игрушки по всему миру.

Практически каждый может собрать одну грань кубика Рубика, но чтобы составить его полностью, часто приходится серьёзно задуматься. Собирая первую грань (или первый слой), можно не заботиться об остальных, но когда остаётся поменять местами последние несколько кубиков, очень легко всё испортить и начинать сначала.

Кубик Рубика относится к вращательным головоломкам, отличительной чертой которых является то, что запутать их проще простого, а вот также быстро собирать их умеет далеко не каждый. При запутывании мы действуем как попало и стараемся испортить сразу всё, при сборке же охватить сразу всю картину слишком сложно, нам удобнее продвигаться методично, шаг за шагом, устанавливая сначала один кусочек, подгоняя к нему второй и т. д. По мере выстраивания правильной картины свобода наших действий ограничивается, ведь достигнутое надо на последующих шагах сохранять. А ближе к концу сборки очередные продвижения уже невозможны без жертв, – мы вынуждены на время отдавать завоёванное с тем, чтобы вернуть его с прибылью. Здесь уже требуются специально разработанные операции, можно назвать их «локальными» или «минимальными», которые вносят в расположение элементов головоломки самые малые изменения, например, переставляют два-три элемента или переворачивают их. При этом «минимальные» не значит «маленькие» – обычно они состоят из довольно большого числа ходов.

Рассмотрим алгоритм собирания вращательных головоломок на примере кубика Рубика.

Формулы операций в «кубике Рубика»

При использовании «минимальных» операций возникает естественный вопрос: как их систематизировать или сформулировать, чтобы ими удобно было пользоваться при собирании кубика. Прежде всего, перед тем, как воспользоваться той или иной уже разработанной операцией, следует как-то обозначить грани кубика, относительно которых их проводить. Стандартные их названия: фасад, тыл, лево, право, верх, низ. А обозначения соответственно: Ф, Т, Л, П, В, Н. Любую формулу операций можно выполнить с помощью поворотов боковых или центральных граней кубика. Один поворот грани по часовой стрелке обозначается так же, как и сама грань (Ф, Т и т. д.). Если грань поворачивают против часовой стрелки, то к обозначению этого действия приписывают знак ’ (Ф’, Т’ и т. д.). Понятно, что два поворота по часовой стрелке идентичны двум поворотам против, а следовательно обозначаются они одинаково: знаком 2 .­­­­­­ (Ф 2 , Т 2 и т. д.). С помощью этой системы обозначений можно сформулировать лишь повороты боковых граней, для центральных же обозначения показаны на рисунке 3.

Ниже приведён список самых распространённых «минимальных» операций, которыми пользуются при собирании кубика Рубика. Следует заметить, что это лишь универсальные комбинации, а для создания более совершенного алгоритма собирания кубика, нужно разработать более «глобальные» операции, которые человеку запомнить довольно трудно, но в общем уменьшающие количество действий, необходимых для собирания кубика из каждого конкретного положения.

Первый слой

Операция «лесенка» (лифт) 2:

НЛН’Л’

Две лесенки 1:

НЛН’Л’Н’Ф’НФ

Выполняются только по две комбинации с поворотом верхней грани между ними:

(ПСн) 4

Операция “Обмен” 1:

Ф 2 В’СпВ 2 СлВ’Ф 2

Операция «Обмен» 2:

Л’Т’П’ТЛТ’ПТ

(Ф’ПФП’) 2

Две последние операции выполняются лишь парами, либо по отдельности, но по два раза подряд с возможным поворотом верхней грани между комбинациями

(ПФ’П’Ф) 2

«Игры с дыркой»

До изобретения кубика Рубика для многих людей знакомство с головоломками начиналось с «пятнашек» – так часто называют известную игру «15».

С пятнашек начинается история игр с дыркой – головоломок, в которых фишки перемещаются по игровому полю за счёт того, что одно из мест на поле свободно. У «пятнашек» есть множество родственников, которые как раз и образовывают целый раздел этих головоломок.

Игру «15» придумал в 70-х годах XIX-го века прославленный американский изобретатель головоломок Сэмюэль Лойд. Время появления его игрушки и известного всем кубика Рубика разделяют ровно сто лет. Любопытно, что возраст обоих изобретателей, когда они придумали свои знаменитые головоломки, был одинаков – немногим больше тридцати. До «пятнашек» никакая другая головоломка таким успехом не пользовалась.

Великий Марк Твен, будучи современником Лойда и свидетелем всеобщего ажиотажа вокруг игры «15», включил в свою сатирическую повесть «Американский претендент» изложение сообщения, якобы переданного агентством «Ассошиэйтед пресс», в котором говорилось, что «за последние несколько недель вошла в моду новая игрушка-головоломка… и что от Атлантического океана до Тихого все население Соединенных Штатов прекратило работу и занимается только этой игрушкой; что в связи с этим вся деловая жизнь в стране замерла, ибо судьи, адвокаты, взломщики, священники, воры, торговцы, рабочие, убийцы, женщины, дети, грудные младенцы,- словом, все с утра до ночи заняты одним-единственным высокоинтеллектуальным и сложным делом… что веселье и радость покинули народ,- на смену им пришли озабоченность, задумчивость, тревога, лица у всех вытянулись, на них появились отчаяние и морщины - следы прожитых лет и пережитых трудностей, а вместе с ними и более печальные признаки, указывающие на умственную неполноценность и начинающееся помешательство; что в восьми городах день и ночь работают фабрики, и все же до сих пор не удалось удовлетворить спрос на головоломку».

Вскоре после своего появления на свет коробочка с цифрами 15 на крышке пересекла океан, быстро распространилась во всех европейских странах и поучила новое имя «такен». Изобретателю посчастливилось найти ту неуловимую меру сложности, когда головоломка решалась без труда почти всеми и в то же время требовала определённой сообразительности, благодаря чему каждый мог получить удовольствие от сознания своего высокого интеллектуального уровня.

рис. 4

Ловушка Лойда

Первому успеху головоломки в немалой степени способствовало и напечатанное в газетах объявление о призе в 1000$ за решение следующей задачи: в исходной позиции фишки располагаются по порядку номеров, за исключением двух последних, которые переставлены местами друг с другом (рис. 4); передвигая по одной фишке, но не вынимая фишки из коробочки, нужно поменять местами номера 15 и 14 так, чтобы все фишки стояли по порядку номеров, а правый нижний угол был свободен.

Помещая это объявление, Лойд знал, что ничем не рискует, так как предлагает неразрешимую задачу. Эта задача ещё сыграла с изобретателем злую шутку, когда он пытался запатентовать свою игру, – ему сказали, что нельзя запатентовать игру, не имеющую решения.

Секрет игры «15»

Не всегда можно головоломку перевести из одного состояния в другое, - запрещены такие переходы, при которых нарушаются те или другие законы сохранения. Есть такой закон и в игре «15». Чтобы объяснить его, мысленно заполним пустое место фишкой с номером 16. Тогда каждый ход - сдвиг фишки - будет состоять в том, что эта фишка меняется местами с фишкой 16. Операцию, при которой какие-то две фишки (не обязательно соседние!) меняются местами, так и назовем - обменом; математический термин для таких операций - транспозиция. Очевидно, что из любой расстановки 16 фишек можно не более чем за 15 обменов получить правильную позицию - обозначим ее S 0 - и вообще любую другую расстановку. При этих обменах не запрещается вынимать фишки из коробки. Например, можно сначала поставить на свое место фишку 1, обменяв ее с той фишкой, которая это место занимает, затем точно так же поставить на место фишку 2 и т. д. Последними мы обменяем фишки 15 и 16 - при этом сразу обе встанут правильно. Конечно, не исключено, что по ходу дела какие-то фишки автоматически попадут на свои места, и их трогать не придется, при этом число обменов окажется меньше 15. Можно расставлять фишки по этой же системе, но в другом порядке, скажем 16, 15, 14, …. или совсем иначе, и тогда число обменов может оказаться другим. Однако, каким бы способом ни выбрать последовательность обменов, превращающую одну заданную расстановку фишек в другую, четность числа обменов в этой последовательности всегда будет одной и той же.

Это очень важное и неочевидное докажем ниже. Оно позволяет дать следующее определение: расстановка называется четной, если ее можно превратить в правильную позицию с помощью четного числа обменов, и нечетной в противном случае. В математике обычно говорят не «расстановка», а «перестановка»; к этому мы еще вернемся. Сама правильная расстановка S 0 всегда четная , а ловушка Лойда L нечетная . Но почему они не переводятся друг в друга?

Как выше уже сказано, каждый ход в игре «15» можно рассматривать как обмен фишки с одной из соседних. Следовательно, при каждом ходе четность расстановки 16 фишек меняется: если до хода расстановку можно было упорядочить за N обменов, то после него - за N+1 обменов (взяв этот ход назад), а числа N и N+1 - разной четности. В обеих расстановках классической задачи Лойда дырка (или фишка 16) расположена одинаково. Если бы мы сумели одну расстановку перевести в другую, то фишка 16 должна была совершить столько же ходов вверх, сколько вниз, и столько же ходов вправо, сколько влево, иначе она не вернулась бы назад. Поэтому мы сделали бы четное число ходов, а так как при каждом ходе четность расстановки меняется, в начале и в конце она была бы одинаковой. Но позиции S 0 и L, как мы видели, имеют разную четность.

Мы рассмотрели лишь малую часть замечательных головоломок, которые придумали математики разных времён, но если когда-нибудь ещё и изобретут головоломку более популярную, чем, например, игра «15», то известней знаменитого кубика Рубика наверняка – нет!

Математические игры и головоломки

Математические игры и головоломки

Математические игры и головоломки очень популярны, как, впрочем, и все игры. И далеко не всегда более сложная игра – более интересная. Часто миллионы людей с неугасаемым интересом играют в самые простые игры, и именно эти игры больше всего ценят, именно они входят в историю математики и прославляют своих создателей.

Наиболее приближенными к математике являются головоломки, но много головоломок образовалось из когда-то существовавших (а некоторые из ещё существующих) игр. Большинство таких основополагающих игр было придумано древнегреческими математиками.

В последнее время математическим играм внимание уделяется, в основном, для нахождения выигрышных стратегий, на что сильно повлияло распространение программирования: составить алгоритм, по которому в игру смог бы играть компьютер, часто бывает сложнее и интереснее, нежели самому научиться играть в неё, при этом глубже вникаешь в суть игры, после чего выиграть в неё можешь уже практически любого.

Простейшие математические игры часто используют как задачи, в которых нужно найти выигрышную стратегию, либо одно положение перевести в другое. Иногда задачи бывают весьма простыми, когда они решаются известными методами, такими как инвариант и раскраска, но есть и весьма простые, но до сих пор неразрешённые задачи, связанные с математическими играми.

Примером может являться популярная игра крестики-нолики на бесконечном поле (рендзю). Она, как известно, при правильной стратегии обоих игроков бесконечна, но выигрышную стратегию при этом никто не знает. В настоящее время придумано множество алгоритмов этой игры, основанных, прежде всего, на переборе различных вариантов и анализе игры на следующие несколько ходов, которые очень близки к выигрышной стратегии, но лишь при их реализации на компьютере – человек же им следовать практически не может. Существуют простейшие приёмы этой игры, которыми пользуются игроки, но решающей чаще всего бывает внимательность.

Игра ним и другие аналогичные игры

Существует несколько игр, в которых двое играющих A и B , руководствуясь определёнными правилами, по очереди вынимают то или иное число фишек из одной или нескольких кучек – побеждает тот, кто берёт последнюю фишку. Простейшая такая игра – это игра с одной кучкой фишек, и сделать ход в ней – значит взять из кучки любое число фишек от 1 до m включительно. Многие подобные игры поддаются исследованию с помощью числа Шпрага-Гранди G(C) . Пустой позиции O , не содержащей фишек, отвечает G(O)= 0. Комбинацию кучек, состоящих соответственно из x, y, … фишек, обозначим C=(x, y, …) и предположим, что допустимые ходы переводят C в другие комбинации: D, E, … Тогда G(C) есть наименьшее неотрицательное число, отличное от G(D), G(E), … Это позволяет по индукции определить G(C) для любой комбинации C , разрешённой правилами игры. Так, в упомянутой задаче G(x)=x mod (m+1).

Если G(C)>0 , то игрок, делающий следующий ход, допустим, это игрок A , может обеспечить себе выигрыш, если ему удастся перейти к “безопасной” комбинации S с G(S)=0 . Действительно, по определению G(S) в этом случае либо S – пустая позиция, и тогда A уже выиграл, либо B следующим ходом должен перейти к “опасной” позиции U с G(U)>0 – и тогда всё повторяется снова. Такая игра после конечного числа ходов заканчивается победой A.

К подобным играм относится ним . Имеется произвольное число кучек фишек, и игроки по очереди выбирают одну какую-то кучку и вынимают из неё любое число фишек (но хотя бы одну обязательно).

Более общий случай представляет игра Мура , которую также можно назвать k- ним. Правила её те же, что и в обычном ниме (1-ним), но здесь разрешается бать фишки из любого количества кучек, не превосходящего k.

Ещё одна подобная игра – Кегли . В ней фишки разложены в ряд, и при каждом ходе убирается одна какая-либо фишка или две соседние. При этом ряд может разбиться на два меньших ряда. Выигрывает тот, кто возьмёт последнюю фишку. Обобщённая вариация этой игры известна под именем игры Витхоффа .

Есть интересная вариация игры ним под названием “звёздный ним” . Она довольно проста, но стратегия в ней видна не сразу. Играют в эту игру на звездообразной фигуре, изображённой на рис. 1, слева. Поставьте по одной фишке на каждую из девяти вершин звезды. Игроки A и B делают ходы по очереди, снимая при каждом ходе либо одну, либо две фишки, соединённые отрезком прямой. Тот, кто снимает последнюю фишку выигрывает.

У игрока B при игре в звёздный ним есть выигрышная стратегия, использующая симметрию игровой доски (вообще, выигрышные стратегии многих математических игр строятся на этом). Представим, что отрезки прямых, соединяющие вершины звезды, - это нити. Тогда всю конфигурацию можно развернуть в окружность, топологически эквивалентную нитяной звезде. Если A снимает с окружности одну фишку, то B снимает две фишки с противоположного участка окружности. Если A берёт две фишки, то B снимает с противоположного участка окружности одну фишку. В обоих случаях на окружности остаются две группы из трёх фишек. Какую бы фишку (или какие бы фишки) ни взял A из одной группы, B берёт соответствующую фишку (или фишки) из другой группы. Ясно, что последняя фишка достанется игроку B.

Другие математические игры

В конце 60-х годов Дж. Леутуэйт из шотландского города Терсо изобрёл замечательную игру с искусно скрытой стратегией “парных ходов”, обеспечивающей второму игроку заведомый выигрыш. На доске размером 5*5 квадратных клеток в шахматном порядке расставлены 13 чёрных и 12 белых фишек, после чего любая из чёрных фишек, например, стоящая на центральном поле, снимается (рис. 2, слева).

Игрок A ходит белыми фишками, игрок B – чёрными. Ходы делаются по вертикали и горизонтали. Проигравшим считается тот из игроков, кто первым не сможет сделать очередной ход. Если доску раскрасить подобно шахматной доске, то станет ясно, что каждая фишка со своего поля переходит на поле другого цвета и что ни одну фишку нельзя заставить ходить дважды. Следовательно, игра для каждого игрока не может продолжаться более 12 ходов. Но она может окончиться и раньше выигрышем для любого игрока, если только B не будет придерживаться рациональной стратегии.

Рациональная стратегия для игрока В состоит в том, чтобы мысленно представить себе всю матрицу (за исключением пустой клетки), покрытую двенадцатью неперекрывающимися костями домино. Как именно они разложены на доске, не имеет значения. На рис. 2, справа показан один из способов покрытия доски костями домино. Какой бы ход ни сделал игрок А, В просто делает ход на ту кость домино, которую только что покинул А. При такой стратегии у В всегда есть ход после очередного хода А, поэтому В заведомо выигрывает за 12 или за меньшее число ходов.

В игру Леутуэйта можно играть не только фишками на доске, но и квадратными плитками или кубиками, передвигаемыми внутри плоской коробочки, на дне которой начерчена матрица. Предположим теперь, что в правила игры внесена поправка, позволяющая любому игроку в любое время ходить любым числом (от 1 до 4) фишек, стоящих на одной горизонтали или вертикали, если первая и последняя фишки в выбранной им горизонтали или вертикали “его” цвета. Перед нами великолепный пример того, как тривиальное (на первый взгляд) изменение правила приводит к резкому усложнению анализа игры. Леутуэйту не удалось найти выигрышную стратегию ни для одного из игроков в этом варианте игры.

Большинство игр, рассмотренных нами, имели выигрышную стратегию, но это не значит, что практически у всех подобных игр она существует. Есть множество игр, выигрышную стратегию в которых на сегодняшний день ещё не изобрели, а есть много и таких, у которых таковой вообще нет.

Головоломки

Математические головоломки бывают самые разные: вращательные (кубик Рубика), “Волшебные кольца”, “Игры с дыркой” (пятнашки), решётчатые и многие другие. Мы рассмотрим лишь некоторые из них.

Вращательные головоломки

Вращательными называются головоломки, суть которых заключается в поворотах рядов кубиков (и не только кубиков), из которых они состоят.

Знаменитейшая головоломка нашего времени – кубик Рубика – начала своё победное шествие по свету с 1978 года, когда с ней впервые ознакомились математики на Международном математическом конгрессе в Хельсинки. Лишь несколько кубиков увезли математики с конгресса, но это стало начальным толчком лавинного распространения игрушки по всему миру.

Практически каждый может собрать одну грань кубика Рубика, но чтобы составить его полностью, часто приходится серьёзно задуматься. Собирая первую грань (или первый слой), можно не заботиться об остальных, но когда остаётся поменять местами последние несколько кубиков, очень легко всё испортить и начинать сначала.

Кубик Рубика относится к вращательным головоломкам, отличительной чертой которых является то, что запутать их проще простого, а вот также быстро собирать их умеет далеко не каждый. При запутывании мы действуем как попало и стараемся испортить сразу всё, при сборке же охватить сразу всю картину слишком сложно, нам удобнее продвигаться методично, шаг за шагом, устанавливая сначала один кусочек, подгоняя к нему второй и т. д. По мере выстраивания правильной картины свобода наших действий ограничивается, ведь достигнутое надо на последующих шагах сохранять. А ближе к концу сборки очередные продвижения уже невозможны без жертв, – мы вынуждены на время отдавать завоёванное с тем, чтобы вернуть его с прибылью. Здесь уже требуются специально разработанные операции, можно назвать их “локальными” или “минимальными”, которые вносят в расположение элементов головоломки самые малые изменения, например, переставляют два-три элемента или переворачивают их. При этом “минимальные” не значит “маленькие” - обычно они состоят из довольно большого числа ходов.

Рассмотрим алгоритм собирания вращательных головоломок на примере кубика Рубика.

Формулы операций в “кубике Рубика”

При использовании “минимальных” операций возникает естественный вопрос: как их систематизировать или сформулировать, чтобы ими удобно было пользоваться при собирании кубика. Прежде всего, перед тем, как воспользоваться той или иной уже разработанной операцией, следует как-то обозначить грани кубика, относительно которых их проводить. Стандартные их названия: фасад, тыл, лево, право, верх, низ. А обозначения соответственно: Ф, Т, Л, П, В, Н. Любую формулу операций можно выполнить с помощью поворотов боковых или центральных граней кубика. Один поворот грани по часовой стрелке обозначается так же, как и сама грань (Ф, Т и т. д.). Если грань поворачивают против часовой стрелки, то к обозначению этого действия приписывают знак ’ (Ф’, Т ’ и т. д.). Понятно, что два поворота по часовой стрелке идентичны двум поворотам против, а следовательно обозначаются они одинаково: знаком 2 . (Ф 2 , Т 2 и т. д.). С помощью этой системы обозначений можно сформулировать лишь повороты боковых граней, для центральных же обозначения показаны на рисунке 3.

Ниже приведён список самых распространённых “минимальных” операций, которыми пользуются при собирании кубика Рубика. Следует заметить, что это лишь универсальные комбинации, а для создания более совершенного алгоритма собирания кубика, нужно разработать более “глобальные” операции, которые человеку запомнить довольно трудно, но в общем уменьшающие количество действий, необходимых для собирания кубика из каждого конкретного положения.

Первый слой

Операция “лесенка” (лифт) 1:

Н ’ П ’ НП

Операция “лесенка” (лифт) 2:

НЛН ’ Л ’

Сложная лесенка:

Н’П’Н 2 П

Второй слой

Две лесенки 1:

НЛН’Л’Н’Ф’НФ

Две лесенки 2:

Н’П’НПНФН’Ф’

Третий слой

Выполняются только по две комбинации с поворотом верхней грани между ними:

Операция “Обмен” 1:

Ф 2 В ’ СпВ 2 СлВ ’ Ф 2

Операция “Обмен” 2:

Л’Т’П’ТЛТ’ПТ

(Ф ’ ПФП ’) 2

Две последние операции выполняются лишь парами, либо по отдельности, но по два раза подряд с возможным поворотом верхней грани между комбинациями

(ПФ ’ П ’ Ф) 2

“Игры с дыркой”

До изобретения кубика Рубика для многих людей знакомство с головоломками начиналось с “пятнашек” – так часто называют известную игру “15”.

С пятнашек начинается история игр с дыркой – головоломок, в которых фишки перемещаются по игровому полю за счёт того, что одно из мест на поле свободно. У “пятнашек” есть множество родственников, которые как раз и образовывают целый раздел этих головоломок.

Игру “15” придумал в 70-х годах XIX -го века прославленный американский изобретатель головоломок Сэмюэль Лойд. Время появления его игрушки и известного всем кубика Рубика разделяют ровно сто лет. Любопытно, что возраст обоих изобретателей, когда они придумали свои знаменитые головоломки, был одинаков – немногим больше тридцати. До “пятнашек” никакая другая головоломка таким успехом не пользовалась.

Великий Марк Твен, будучи современником Лойда и свидетелем всеобщего ажиотажа вокруг игры “15”, включил в свою сатирическую повесть “Американский претендент” изложение сообщения, якобы переданного агентством “Ассошиэйтед пресс”, в котором говорилось, что “за последние несколько недель вошла в моду новая игрушка-головоломка... и что от Атлантического океана до Тихого все население Соединенных Штатов прекратило работу и занимается только этой игрушкой; что в связи с этим вся деловая жизнь в стране замерла, ибо судьи, адвокаты, взломщики, священники, воры, торговцы, рабочие, убийцы, женщины, дети, грудные младенцы,- словом, все с утра до ночи заняты одним-единственным высокоинтеллектуальным и сложным делом... что веселье и радость покинули народ,- на смену им пришли озабоченность, задумчивость, тревога, лица у всех вытянулись, на них появились отчаяние и морщины - следы прожитых лет и пережитых трудностей, а вместе с ними и более печальные признаки, указывающие на умственную неполноценность и начинающееся помешательство; что в восьми городах день и ночь работают фабрики, и все же до сих пор не удалось удовлетворить спрос на головоломку”.

Вскоре после своего появления на свет коробочка с цифрами 15 на крышке пересекла океан, быстро распространилась во всех европейских странах и поучила новое имя “такен”. Изобретателю посчастливилось найти ту неуловимую меру сложности, когда головоломка решалась без труда почти всеми и в то же время требовала определённой сообразительности, благодаря чему каждый мог получить удовольствие от сознания своего высокого интеллектуального уровня.

Первому успеху головоломки в немалой степени способствовало и напечатанное в газетах объявление о призе в 100 0$ за решение следующей задачи: в исходной позиции фишки располагаются по порядку номеров, за исключением двух последних, которые переставлены местами друг с другом (рис. 4); передвигая по одной фишке, но не вынимая фишки из коробочки, нужно поменять местами номера 15 и 14 так, чтобы все фишки стояли по порядку номеров, а правый нижний угол был свободен.

Помещая это объявление, Лойд знал, что ничем не рискует, так как предлагает неразрешимую задачу. Эта задача ещё сыграла с изобретателем злую шутку, когда он пытался запатентовать свою игру, – ему сказали, что нельзя запатентовать игру, не имеющую решения.

Секрет игры “15”

Не всегда можно головоломку перевести из одного состояния в другое, - запрещены такие переходы, при которых нарушаются те или другие законы сохранения. Есть такой закон и в игре “15”. Чтобы объяснить его, мысленно заполним пустое место фишкой с номером 16. Тогда каждый ход - сдвиг фишки - будет состоять в том, что эта фишка меняется местами с фишкой 16. Операцию, при которой какие-то две фишки (не обязательно соседние!) меняются местами, так и назовем - обменом; математический термин для таких операций - транспозиция. Очевидно, что из любой расстановки 16 фишек можно не более чем за 15 обменов получить правильную позицию - обозначим ее S 0 - и вообще любую другую расстановку. П ри этих обменах не запрещается вынимать фишки из коробки. Например, можно сначала поставить на свое место фишку 1, обменяв ее с той фишкой, которая это место занимает, затем точно так же поставить на место фишку 2 и т. д. Последними мы обменяем фишки 15 и 16 - при этом сразу обе встанут правильно. Конечно, не исключено, что по ходу дела какие-то фишки автоматически попадут на свои места, и их трогать не придется, при этом число обменов окажется меньше 15. Можно расставлять фишки по этой же системе, но в другом порядке, скажем 16, 15, 14, .... или совсем иначе, и тогда число обменов может оказаться другим. Однако, каким бы способом ни выбрать последовательность обменов, превращающую одну заданную расстановку фишек в другую, четность числа обменов в этой последовательности всегда будет одной и той же.

Это очень важное и неочевидное докажем ниже. Оно позволяет дать следующее определение: расстановка называется четной, если ее можно превратить в правильную позицию с помощью четного числа обменов, и нечетной в противном случае. В математике обычно говорят не “расстановка”, а “перестановка”; к этому мы еще вернемся. Сама правильная расстановка S 0 всегда четная , а ловушка Лойда L нечетная . Но почему они не переводятся друг в друга?

Как выше уже сказано, каждый ход в игре “15” можно рассматривать как обмен фишки с одной из соседних. Следовательно, при каждом ходе четность расстановки 16 фишек меняется: если до хода расстановку можно было упорядочить за N обменов, то после него - за N+1 обменов (взяв этот ход назад), а числа N и N +1 - разной четности. В обеих расстановках классической задачи Лойда дырка (или фишка 16) расположена одинаково. Если бы мы сумели одну расстановку перевести в другую, то фишка 16 должна была совершить столько же ходов вверх, сколько вниз, и столько же ходов вправо, сколько влево, иначе она не вернулась бы назад. Поэтому мы сделали бы четное число ходов, а так как при каждом ходе четность расстановки меняется, в начале и в конце она была бы одинаковой. Но позиции S 0 и L, как мы видели, имеют разную четность.

Мы рассмотрели лишь малую часть замечательных головоломок, которые придумали математики разных времён, но если когда-нибудь ещё и изобретут головоломку более популярную, чем, например, игра “15”, то известней знаменитого кубика Рубика наверняка – нет!

Список литературы

  1. Я. И. Перельман “Занимательная математика”
  2. Мартин Гарднер “Путешествие во времени”. – Москва, “Мир”, 1990
  3. У. Болл, Г. Коксетер “Математические эссе и развлечения”. – Москва, “Мир”, 1986
  4. В. Н. Дубровский, А. Т. Калинин “Математические головоломки”. – Москва, “Знание”, 1990
  5. “Математический цветник” (составитель и редактор Д. А. Кларнер). – Москва, “Мир”, 1983

597 руб


Задачи по теории вероятностей

Настоящее учебное пособие содержит более 1500 задач (включая подзадачи), непосредственно "привязанных" к учебнику автора в двух книгах "Вероятность-1" и "Вероятность-2" и упорядоченных в соответствии с содержанием этих книг. Многие задачи сопровождаются указаниями к их решению. В приложении дан аннотированный указатель основных обозначений и важных понятий теории вероятностей, комбинаторики и теории потенциала, используемых в пособии.

Пособие рассчитано на студентов высших учебных заведений по физико-математическим направлениям и специальностям. Может служить учебным пособием для аспирантов и справочным пособием для специалистов.

444 руб


Линейная алгебра в вопросах и задачах

Пособие охватывает все разделы курса линейной алгебры и должно помочь активному и неформальному усвоению материала. По каждой теме кратко излагаются основные теоретические сведения и предлагаются контрольные вопросы; приводятся решения стандартных и нестандартных задач; даются задачи и упражнения для самостоятельной работы с ответами и указаниями.

Для студентов высших учебных заведений.

395 руб


Основы комбинаторики и теории чисел. Сборник задач. Учебное пособие

Этот задачник возник на основе курса "Основы комбинаторики и теории чисел", который А. М. Райгородский читает на факультете инноваций и высоких технологий МФТИ судентам-информатикам.
Курс читается в первом же семестре и служит весьма основательным введением как в теорию множеств, так и в комбинаторику, и в теорию чисел. Таким образом, он создает почву и для математического анализа, и для математической логики, и для теории вероятностей, и для тех специфических алгоритмических курсов, в которых используются теоретико-числовые подходы.
Задачи, собранные в этой книге, разрабатывались, соответственно, для ведения семинаров по курсу. Среди задач есть, конечно, много стандартных (в этом случае мы стараемся давать ссылку на известный нам источник, хотя зачастую идентифицировать такие источники весьма трудно). Но есть и весьма оригинальные задачи. Вообще, сам курс очень насыщенный, и в нём есть темы, которые довольно редко обсуждаются в литературе. Например, обобщённая формула обращения Мёбиуса - это одна из изюминок курса.

Все задачи задачника снабжены ответами, а большинство задач - решениями. Мы надеемся, что эта книга окажется полезной не только студентам МФТИ, но и всем тем, кто интересуется основами современной комбинаторики и теории чисел - школьникам, студентам, преподавателям математических классов и ВУЗов.

Подготовил:

Петров А. А.,

10Б класс (физ-мат)

г. Кемерово - 1999


Математические игры и головоломки очень популярны, как, впрочем, и все игры. И далеко не всегда более сложная игра – более интересная. Часто миллионы людей с неугасаемым интересом играют в самые простые игры, и именно эти игры больше всего ценят, именно они входят в историю математики и прославляют своих создателей.

Наиболее приближенными к математике являются головоломки, но много головоломок образовалось из когда-то существовавших (а некоторые из ещё существующих) игр. Большинство таких основополагающих игр было придумано древнегреческими математиками.

В последнее время математическим играм внимание уделяется, в основном, для нахождения выигрышных стратегий, на что сильно повлияло распространение программирования: составить алгоритм, по которому в игру смог бы играть компьютер, часто бывает сложнее и интереснее, нежели самому научиться играть в неё, при этом глубже вникаешь в суть игры, после чего выиграть в неё можешь уже практически любого.

Игры

Простейшие математические игры часто используют как задачи, в которых нужно найти выигрышную стратегию, либо одно положение перевести в другое. Иногда задачи бывают весьма простыми, когда они решаются известными методами, такими как инвариант и раскраска, но есть и весьма простые, но до сих пор неразрешённые задачи, связанные с математическими играми.

Примером может являться популярная игра крестики-нолики на бесконечном поле (рендзю). Она, как известно, при правильной стратегии обоих игроков бесконечна, но выигрышную стратегию при этом никто не знает. В настоящее время придумано множество алгоритмов этой игры, основанных, прежде всего, на переборе различных вариантов и анализе игры на следующие несколько ходов, которые очень близки к выигрышной стратегии, но лишь при их реализации на компьютере – человек же им следовать практически не может. Существуют простейшие приёмы этой игры, которыми пользуются игроки, но решающей чаще всего бывает внимательность.

Игра ним и другие аналогичные игры

Существует несколько игр, в которых двое играющих A и B, руководствуясь определёнными правилами, по очереди вынимают то или иное число фишек из одной или нескольких кучек – побеждает тот, кто берёт последнюю фишку. Простейшая такая игра – это игра с одной кучкой фишек, и сделать ход в ней – значит взять из кучки любое число фишек от 1 до m включительно. Многие подобные игры поддаются исследованию с помощью числа Шпрага-Гранди G(C). Пустой позиции O, не содержащей фишек, отвечает G(O)=0. Комбинацию кучек, состоящих соответственно из x, y, … фишек, обозначим C=(x, y, …) и предположим, что допустимые ходы переводят C в другие комбинации: D, E, … Тогда G(C) есть наименьшее неотрицательное число, отличное от G(D),G(E), … Это позволяет по индукции определить G(C) для любой комбинации C, разрешённой правилами игры. Так, в упомянутой задаче G(x)=x mod (m+1).

Если G(C)>0, то игрок, делающий следующий ход, допустим, это игрок A, может обеспечить себе выигрыш, если ему удастся перейти к “безопасной” комбинации S с G(S)=0. Действительно, по определению G(S) в этом случае либо S – пустая позиция, и тогда A уже выиграл, либо B следующим ходом должен перейти к “опасной” позиции U с G(U)>0 – и тогда всё повторяется снова. Такая игра после конечного числа ходов заканчивается победой A.

К подобным играм относится ним . Имеется произвольное число кучек фишек, и игроки по очереди выбирают одну какую-то кучку и вынимают из неё любое число фишек (но хотя бы одну обязательно).

Более общий случай представляет игра Мура , которую также можно назвать k-ним. Правила её те же, что и в обычном ниме (1-ним), но здесь разрешается бать фишки из любого количества кучек, не превосходящего k.

Ещё одна подобная игра – Кегли . В ней фишки разложены в ряд, и при каждом ходе убирается одна какая-либо фишка или две соседние. При этом ряд может разбиться на два меньших ряда. Выигрывает тот, кто возьмёт последнюю фишку. Обобщённая вариация этой игры известна под именем игры Витхоффа .

Есть интересная вариация игры ним под названием “звёздный ним” . Она довольно проста, но стратегия в ней видна не сразу. Играют в эту игру на звездообразной фигуре, изображённой на рис. 1, слева. Поставьте по одной фишке на каждую из девяти вершин звезды. Игроки A и B делают ходы по очереди, снимая при каждом ходе либо одну, либо две фишки, соединённые отрезком прямой. Тот, кто снимает последнюю фишку выигрывает.


У игрока B при игре в звёздный ним есть выигрышная стратегия, использующая симметрию игровой доски (вообще, выигрышные стратегии многих математических игр строятся на этом). Представим, что отрезки прямых, соединяющие вершины звезды, - это нити. Тогда всю конфигурацию можно развернуть в окружность, топологически эквивалентную нитяной звезде. Если A снимает с окружности одну фишку, то B снимает две фишки с противоположного участка окружности. Если A берёт две фишки, то B снимает с противоположного участка окружности одну фишку. В обоих случаях на окружности остаются две группы из трёх фишек. Какую бы фишку (или какие бы фишки) ни взял A из одной группы, B берёт соответствующую фишку (или фишки) из другой группы. Ясно, что последняя фишка достанется игроку B.

Другие математические игры

В конце 60-х годов Дж. Леутуэйт из шотландского города Терсо изобрёл замечательную игру с искусно скрытой стратегией “парных ходов”, обеспечивающей второму игроку заведомый выигрыш. На доске размером 5*5 квадратных клеток в шахматном порядке расставлены 13 чёрных и 12 белых фишек, после чего любая из чёрных фишек, например, стоящая на центральном поле, снимается (рис. 2, слева).

Игрок A ходит белыми фишками, игрок B – чёрными. Ходы делаются по вертикали и горизонтали. Проигравшим считается тот из игроков, кто первым не сможет сделать очередной ход. Если доску раскрасить подобно шахматной доске, то станет ясно, что каждая фишка со своего поля переходит на поле другого цвета и что ни одну фишку нельзя заставить ходить дважды. Следовательно, игра для каждого игрока не может продолжаться более 12 ходов. Но она может окончиться и раньше выигрышем для любого игрока, если только B не будет придерживаться рациональной стратегии.


Рациональная стратегия для игрока В состоит в том, чтобы мысленно представить себе всю матрицу (за исключением пустой клетки), покрытую двенадцатью неперекрывающимися костями домино. Как именно они разложены на доске, не имеет значения. На рис. 2, справа показан один из способов покрытия доски костями домино. Какой бы ход ни сделал игрок А, В просто делает ход на ту кость домино, которую только что покинул А. При такой стратегии у В всегда есть ход после очередного хода А, поэтому Взаведомо выигрывает за 12 или за меньшее число ходов.

В игру Леутуэйта можно играть не только фишками на доске, но и квадратными плитками или кубиками, передвигаемыми внутри плоской коробочки, на дне которой начерчена матрица. Предположим теперь, что в правила игры внесена поправка, позволяющая любому игроку в любое время ходить любым числом (от 1 до 4) фишек, стоящих на одной горизонтали или вертикали, если первая и последняя фишки в выбранной им горизонтали или вертикали “его” цвета. Перед нами великолепный пример того, как тривиальное (на первый взгляд) изменение правила приводит к резкому усложнению анализа игры. Леутуэйту не удалось найти выигрышную стратегию ни для одного из игроков в этом варианте игры.

Большинство игр, рассмотренных нами, имели выигрышную стратегию, но это не значит, что практически у всех подобных игр она существует. Есть множество игр, выигрышную стратегию в которых на сегодняшний день ещё не изобрели, а есть много и таких, у которых таковой вообще нет.

Головоломки

Математические головоломки бывают самые разные: вращательные (кубик Рубика), “Волшебные кольца”, “Игры с дыркой” (пятнашки), решётчатые и многие другие. Мы рассмотрим лишь некоторые из них.

Вращательные головоломки

Вращательными называются головоломки, суть которых заключается в поворотах рядов кубиков (и не только кубиков), из которых они состоят.

Знаменитейшая головоломка нашего времени – кубик Рубика – начала своё победное шествие по свету с 1978 года, когда с ней впервые ознакомились математики на Международном математическом конгрессе в Хельсинки. Лишь несколько кубиков увезли математики с конгресса, но это стало начальным толчком лавинного распространения игрушки по всему миру.

Практически каждый может собрать одну грань кубика Рубика, но чтобы составить его полностью, часто приходится серьёзно задуматься. Собирая первую грань (или первый слой), можно не заботиться об остальных, но когда остаётся поменять местами последние несколько кубиков, очень легко всё испортить и начинать сначала.

Кубик Рубика относится к вращательным головоломкам, отличительной чертой которых является то, что запутать их проще простого, а вот также быстро собирать их умеет далеко не каждый. При запутывании мы действуем как попало и стараемся испортить сразу всё, при сборке же охватить сразу всю картину слишком сложно, нам удобнее продвигаться методично, шаг за шагом, устанавливая сначала один кусочек, подгоняя к нему второй и т. д. По мере выстраивания правильной картины свобода наших действий ограничивается, ведь достигнутое надо на последующих шагах сохранять. А ближе к концу сборки очередные продвижения уже невозможны без жертв, – мы вынуждены на время отдавать завоёванное с тем, чтобы вернуть его с прибылью. Здесь уже требуются специально разработанные операции, можно назвать их “локальными” или “минимальными”, которые вносят в расположение элементов головоломки самые малые изменения, например, переставляют два-три элемента или переворачивают их. При этом “минимальные” не значит “маленькие” - обычно они состоят из довольно большого числа ходов.

Все головоломки с ответами и решениями.

Эти головоломки предназначены в основном для детей старшего школьного возраста. Задачи-шутки, задачи-загадки, шуточные истории и затейные математические задачи развивают у школьников любознательность и сообразительность. При этом у детей развивается интуиция, догадка, скорость мышления. Особую умственную активность дети проявляют в ходе достижения игровой цели.

Перед вами занимательный математический материал разной степени трудности. Он может представлять интерес и для взрослых.

МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ

Белка и орехи

Белка, делая запасы на зиму, наткнулась на большую кучу орехов. Она трудилась три ночи, заполняя орехами своё гнездо. Сколько орехов исчезло из кучи, если в первую ночь белка унесла вдвое меньше орехов, чем в обе последующие (вместе взятые), а в последнюю - на один орех меньше, чем в обе предыдущие?

(На 9 орехов. В первую ночь - 3, во вторую - 2, в третью - 4)

Сколько кошек?

В комнате четыре угла. В каждом углу сидит по кошке. Напротив каждой кошки по три кошки. На хвосте каждой кошки по одной кошке. Сколько же кошек в комнате?

(В комнате всего четыре кошки)

Кот и мыши

Кот Васька спит, а во сне видит, что его окружили двенадцать серых мышей и одна белая. Слышится Ваське во сне голос: "Ты должен съедать каждую тринадцатую мышку, считая все время в одном направлении, так, чтобы последней была съедена белая мышь". Задумался Васька: с какой же мышки начинать?

Помогите коту решить задачу.

(Начинать счёт следует с шестой мыши, считая по ходу часовой стрелки от белой мыши (её не считая). Чтобы установить, с какой мыши начинать счёт, нарисуйте на кругу 12 точек и один крестик и начните с него счёт. Вычёркивайте каждую точку и крестик, когда до него дойдёт очередь. Делайте так до тех пор, пока не останется одна точка. Замените её белой мышью, а крестик укажет, с какой серой мыши начинать)

Сколько их?

Ваня имеет столько же братьев, сколько и сестёр, а у его сестры вдвое меньше сестёр, чем братьев. Сколько сестёр и сколько братьев в той семье?

(3 сестры и 4 брата)

Все мои уточки

Ваня наблюдает за утками, плавающими в деревенском пруду.

Одна утка плывёт перед двумя утками, другая утка плывёт между двумя утками, и одна утка плывёт за двумя утками. "Так много уток никогда ещё не было у нас в деревенском пруду", - думает Ваня. Сколько уток видит Ваня?

(Мальчик видит в пруду 3 уток)

Два пастуха

Сошлись два пастуха, Иван и Пётр. Иван и говорит Петру: "Отдай-ка ты мне одну овцу, тогда у меня будет овец ровно вдвое больше, чем у тебя!" А Пётр ему отвечает: "Нет! Лучше ты мне отдай одну овцу тогда у нас будет овец поровну!"

Сколько было у каждого овец?

(Ясно, что овец больше у Ивана. Но на сколько у него больше, чем у Петра? Если Иван отдаст одну овцу не Петру, а кому-либо другому, то станет ли у обоих пастухов овец поровну? Нет, потому что поровну у них было бы только в том случае, если бы эту овцу получил Пётр. Значит, если Иван отдаёт одну овцу не Петру, а третьему лицу, то у него всё-таки будет больше овец, чем у Петра, но на сколько больше? Ясно, что на одну овцу, потому что если прибавить теперь к стаду Петра одну овцу, то у обоих станет поровну. Отсюда следует, что, пока Иван не отдаст никому ни одной своей овцы, у него в стаде на две овцы больше, чем у Петра. Теперь примемся за Петра. У него, как мы нашли, на две овцы меньше, чем у Ивана. Значит, если Пётр отдаст, скажем, одну свою овцу не Ивану, а кому-либо иному, то тогда у Ивана будет на три овцы больше, чем у Петра. Но пусть эту овцу получит именно Иван, а не третье лицо. Ясно, что тогда у него будет на четыре овцы больше, чем осталось у Петра. Но задача говорит, что у Ивана в этом случае будет ровно вдвое больше овец, чем у Петра. Значит, четыре и есть именно то число овец, которое останется у Петра, если он отдаст одну овцу Ивану, у которого будет восемь овец. А до предполагаемой отдачи, значит, у Ивана было 7, а у Петра 5 овец)

Делёж верблюдов

Старик, имевший трёх сыновей, распорядился, чтобы они после его смерти поделили принадлежавшее ему стадо верблюдов так, чтобы старший взял половину всех верблюдов, средний - треть и младший - девятую часть всех верблюдов. Старик умер и оставил 17 верблюдов. Сыновья начали делёж, но оказалось, что число 17 не делится ни на 2, ни на 3, ни на 9. В недоумении, как им быть, братья обратились к мудрецу. Тот приехал к ним на собственном верблюде и разделил по завещанию. Как он это сделал?

(Мудрец пустился на уловку. Он прибавил к стаду на время своего верблюда, тогда их стало 18. Разделив это число, как сказано в завещании (старший брат получил 18 х 1/2 = 9 верблюдов, средний 18 х 1/3 = 6 верблюдов, младший 18 х 1/9 = 2 верблюда), мудрец взял своего верблюда обратно (9 + 6 + 2 + 1 = 18). Секрет заключается в том, что части, на которые по завещанию должны были делить стадо сыновья, в сумме не составляют 1. Действительно, 1/2 + 1/3 + 1/9 = 17/18)

Вьючные животные

Мул и ишак, груженные мешками, идут рядом. Мул говорит ишаку: "Я потащу вдвое больше тебя, если возьму у тебя мешок. А если ты возьмёшь мой мешок, то мы оба понесём поровну".

Гладкова Марина, Гончарова Анастасия, Дьячков Игорь

Это презентация является проектом учащихся 7 класса, цель которого показать разнообразие математических игр и головоломок и научить в них играть других ребят, чтобы занять учащихся полезным делом на переменах, заменив динамичные игры, часто приводящие к травмам, играми на концентрацию и тренировку памяти.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ ЮГО-ВОСТОЧНОЕ ОКРУЖНОЕ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ РАЙОН«МАРЬИНО» Авторы: учащиеся 7А: Гладкова Марина, Гончарова Анастасия, Дьячков Игорь Руководитель: Неровнова В. В. учитель математики Математические игры и головоломки

Цели и задачи Цели проекта: 1) показать разнообразие математических игр и головоломок; 2) научить в них играть других ребят. Задачи: 1) заменить динамичные игры, часто приводящие к травмам, играми на концентрацию и тренировку памяти; 2) занять учащихся полезным делом на переменах, с целью развития логического мышления и возбуждения мозговой активности.

Чем заняться школьникам на переменах? Главный вопрос проекта:

Мы занялись этим проектом для того, чтобы найти и показать игры, в которые можно поиграть на перемене, вместо того, чтобы ничего не делать или бегать. В нашей работе мы расскажем о разнообразии игр и головоломок, о целях каждой игры. И нам хочется научить играть в них других ребят. Идея работы возникла, когда на большом столе в классе появились шашки и игра «5 в ряд». Многие стали играть в них, и мы поняли, что игр катастрофически не хватает. Тогда решили собрать коробку игр, которая помогла осуществить хранение, изучение и популяризацию игр и головоломок. Мы знаем, что у игр существуют стратегии, но это тема другого проекта, а пока мы хотим вдоволь наиграться и найти занятие всем на переменах.

Быки и коровы Быки и коровы - логическая игра для двух игроков. Для игры достаточно иметь бумагу, ручку и уметь считать. Также игра может называться «Цифры». Играют двое. Каждый задумывает и записывает тайное 4-х значное число с неповторяющимися цифрами. Игрок, который начинает игру по жребию, делает попытку отгадать число. Попытка - это 4-х значное число с неповторяющимися цифрами, сообщаемое противнику. Противник сообщает в ответ, сколько цифр угадано без совпадения с их позициями в тайном числе(коровы) и сколько угадано вплоть до позиции в тайном числе(быки). Например: Задумано тайное число «3219». Попытка: «2310». Результат две «коровы» (две цифры: 2 и 3 - угаданы на неверных позициях) и один «бык» (одна цифра 1 угадана вплоть до позиции). Игроки делают попытки угадать по очереди. Побеждает тот, кто угадает первым. 2310 – 1б, 2к. 5829 – 1б, 1к. Цель: угадать число соперника. 3219

Рассада В начале игры на бумаге рисуется несколько точек (их называют семенами). Каждый игрок соединяет 2 точки линией, или рисует линию-петлю, начинающуюся в какой-нибудь точке и в этой же точке заканчивающуюся («рассада прорастает»). На каждой проведённой линии рисуется одна новая точка, при этом должны соблюдаться следующие правила: линии не должны пересекаться, проводимая линия не должна проходить через ранее поставленные точки и из каждой точки не должно исходить более трёх линий. Проигрывает тот игрок, который не сможет сделать ход. Цель игры - рисовать линии, пока у противника не закончатся ходы. Изобретателями игры «Рассада» являются профессор англичане Джон Хортон Конвей и аспирант Майкл Стьюарт Патерсон, которую изобрели в 1967 году.

Игра «Ход конём» Цель игры - расставить числа от 1 до 100 в клетках квадрата 10*10,сделать как можно больше ходов, проходя через все клетки один раз, и только буквой «Г», как ходит «Конь» в шахматах. Эта игра известна как задача с XVIII века. Леонард Эйлер посвятил ей большую работу «Решение одного любопытного вопроса, который, кажется, не подчиняется никакому исследованию». В нашем классе рекордное число заполненных клеток, это 98. Мы не останавливаемся на достигнутом и пытаемся дойти до 100. 1 4 6 3 5 2 7 8 9

15 спичек разбиваются на 2 кучки, 7 и 8 штук. Игроки по очереди выбирают одну из кучек и вынимают из неё от 1 до 3 спичек, побеждает тот, кто берёт последнюю спичку. Количество спичек, кучек и сколько можно брать спичек определяется по договоренности. Вот почему существует много вариантов игры Ним. Цель: Взять последний предмет. Игра Ним

Цель: Взять последнюю фишку. Игрок А Игрок В И г р о к А вы и г р а л Есть интересная вариация игры ним под названием «звёздный ним». Играют в эту игру на звездообразной фигуре. Поставив по одной фишке на каждую из девяти вершин звезды, игроки A и B делают ходы по очереди, снимая при каждом ходе либо одну, либо две соседние фишки. Тот, кто снимает последнюю фишку выигрывает. Звёздный Ним

Игровое поле состоит из клеток, на которые участники выкладывают буквы, составляя различные слова. В начале игры каждый игрок получает 7 случайных букв. На середину игрового поля выкладывается первое слово, затем следующий игрок может добавить слово «на пересечение» из своих букв. Слова выкладываются либо слева направо, либо сверху вниз. Игра «Эрудит», скорее лингвистическая, но можно отнести и к математическим играм, так как во время подсчета очков игроки развивают навыки устного счета. Цель: Набрать как можно больше очков, выстраивая слова.

Пятнашки Цель игры - расставить костяшки в коробке по номерам, сделав как можно меньше перемещений. Пятнашки - популярная головоломка, придуманная более 100 лет назад изобрел знаменитый англичанин Сэм Лойд. Игра потеряла свою привлекательность, как только был раскрыт ее секрет. Если число нарушений порядка шашек четно, то головоломку можно решить, если же оно нечетно, то можно не трудиться.

Минус-кубик Цель головоломки - переставить кубики таким образом, чтобы на каждой стороне все грани малых кубиков были окрашены в один цвет. Минус-кубик - объемная головоломка, являющаяся вариантом пятнашек. Она состоит из 7 малых кубиков, каждый из которых собирается из двух П-образных половинок разного цвета.

Цель: сложить фигуру, указанную на рисунке. Головоломка Пифагора" - это квадрат, разделенный на 7 частей: два квадрата (большой и маленький), четыре треугольника (два больших и два маленьких) и параллелограмм. Все детали головоломки уложены в рамку - неделимую часть, с помощью которой можно связать элементы игры. Из деталей можно составлять геометрические фигуры сложной конфигурации, силуэты, напоминающие предметы реальной действительности. Необходимо использовать все части игры и свою фантазию.

Даны три стержня, на один из которых нанизаны несколько колец, лежащих меньшее на большем. Задача состоит в том, чтобы перенести пирамиду за наименьшее число ходов. За один раз разрешается переносить только одно кольцо, причём нельзя класть большее кольцо на меньшее. Эту известную игру придумал французский математик Эдуард Люка, в 1883 году её продавали как забавную игрушку. Цель: переложить все кольца на второй стержень.

Цель: из предложенных деталей сложить куб. Головоломка состоит из 7 объемных геометрических фигур разных цветов. Во время решения подобных задач возникает ощущение каких-то реальных передвижек в голове. В процессе таких игр учишься пространственно мыслить, развивать внимание, сосредоточенность, терпение. Магический куб

Играть в эту игру можно на обычном шахматном поле или нарисовать специальное поле. Правила игры: У игрока, играющего за волка есть одна фишка, которая стоит на белом кружке или на соответствующем поле шахматной доски. У игрока, играющего за овец 4 фишки, которые стоят на черных кружках или на соответствующих полях шахматной доски. Ходят волк и овцы по линиям сетки или по принципу шашек. При этом овцы могут ходить только вперед, а волк и вперед, и назад. Первый ход делает волк. Побеждает тот, кто достигнет своей цели. Цель волка - дойти до противоположного края поля, прорвав цепь овец. Цель овец - запереть волка, чтобы ему некуда было ходить.

Пять в ряд или Гомоку Цель игры состоит в том, чтобы выстроить в ряд 5 фишек по вертикали, горизонтали или диагонали. Мы играем в эту игру на пластмассовом поле, и выставляем круги двух цветов по «5 в ряд». Существует много вариантов этой игры: крестики- нолики; рэндзю, древняя китайская логическая игра -Гомоку, в традиционном варианте ведущаяся на поле 19х19, а в спортивном варианте 15х15. .

Один из самых распространенных видов головоломок. Каждая головоломка имеет свой определенный уровень сложности., оцениваемый по 5-ти или 6-ти бальной шкале. Головоломка «Ключи» Цель: разделить ключи, а затем соединить их снова. Два ключа, соединенные таким способом, что кажутся неразделяемыми. Но ключи разделяются. Это одна из известных загадок, которая очень популярна с момента ее создания в 20 веке, во время британского увлечения головоломками. Сложность: 3 2) Головоломка «Оленьи рога» Цель: разобрать и после собрать головоломку В конце девятнадцатого века в Англии началось повальное увлечение головоломками. «Оленьи рога» - одна из успешно воссозданных, и частично усовершенствованных головоломок того времени, под руководством Ноба Йошигахара (1936-2004). Ключевое слово разгадки-«Рога». Сложность: 4 Железные головоломки

Цель – собрать интересную фигуру. Неокуб- средство для снятия стресса, развития творческих способностей, пространственного мышления и мелкой моторики. N eoCube - оригинальная головоломка, состоящая из 216-ти магнитов в форме шара диаметром от 5 до 10 мм. Автор неокуба - экономист Крис Реда. Из него можно собрать различные конфигурации, начиная от классических геометрических форм (сфера, икосаэдр, додекаэдр) до безымянных сложных несимметричных конструкций. В интернете можно найти много роликов, объясняющих как собрать эти фигуры. НЕОКУБ

Мы провели социологический опрос по теме нашего проекта, в котором приняли участие 84 семиклассника и задали им 3 вопроса: Чем можно заняться на переменах? В какие тихие игры, головоломки играешь на переменах? Знаешь ли такие: Игра « Ним»; Игра «Эрудит»; Игра «Звёздный Ним»;Игра « Волк и овцы»; Игра «Ханойская башня»; Игра «Рассада» ; Игра «Пять в ряд»; «Головоломка Пифагора»; Головоломка «Минус-кубик»? А вот, что нам удалось узнать:

Заключение Мы рассмотрели небольшую часть математических игр и головоломок, которые придумали математики разных времён. Их любят и дети, и взрослые. Они не просто развлечение, а развивающее пособие, потому что направлены на развитие различных мыслительных процессов, а это необходимо нам на уроках в школе. В наши игры можно играть в любое время и в любом месте, а главное на переменах. Два ученика, сражаясь в какую-нибудь интересную и увлекательную игру на перемене, получают большое творческое удовлетворение от борьбы. Ну, а победы и поражения, хитроумные замыслы и коварные ловушки соперников не мешают им оставаться друзьями в логическом решении. Поиграв на перемене, ребята отдохнут от урока и зарядятся положительной энергией для дальнейших дел. Математические игры и головоломки никогда не устареют. Игры помогают найти новых друзей! По - нашему всё это здорово! Давайте играть вместе!